160 research outputs found

    Sick or Sad? A Qualitative Study on How Dutch GPs Deal With Sadness Complaints Among Young Adults

    Get PDF
    Feelings of sadness among young adults related to a certain phase of life or to societal factors run the risk of being interpreted as an individual medical problem. Therefore, healthcare professionals should more often widen their perspective and consider de-medicalization as being part of their professional responsibility too. This article presents results from a qualitative interview conducted with 13 GPs in different phases of their career to get more insight into the way they deal with complaints of sadness among young adults. All participants acted proactively but in different ways. Based on the interviews, a typology of three types of general practitioners has been created: the fast referrer, the expert, and the societal GP. There seems to be a paradox in the way GPs think about de-medicalization on a macro level and the way they act on a micro level. Elaborating on Parsons’(1951) classical concept of the sick role, this study introduces the term semi-legitimized sick role to clarify this paradox. The third type, “the societal GP”, appears to be the most able to show a more multifactorial view on complaints of sadness. Therefore, this type connects the most to a course of de-medicalization

    A framework for the propagation of uncertainty in Transfer Path Analysis

    Get PDF
    Transfer Path Analysis (TPA) is a test-based methodology used to analyse the propagation of noise and vibration in complex systems. In this paper we present a covariance based framework for the propagation of experimental uncertainty in classical, blocked force, and component-based TPA procedures. The presence of both complex and correlated uncertainty is acknowledged through a bivariate description of the underlying uncertainty. The framework is summarised by a series of equations that propagate uncertainty through the various stages of a TPA procedure i.e. inverse source characterisation, dynamic sub-structuring, and forward response prediction. The uncertainty associated with rank ordering of source contributions is also addressed. To demonstrate the proposed framework a numerical simulation is presented, the results of which are compared against Monte-Carlo methods with good agreement obtained. An experimental study is also presented, where a blocked force TPA is performed on an electric steering system. The proposed uncertainty framework requires no additional experimental effort over and above what is performed in a standard TPA and may therefore be readily implemented into current TPA practices

    The relative impact of school‐wide positive behavior support on teachers’ perceptions of student behavior across schools, teachers, and students

    Get PDF
    School‐wide positive behavior support (SWPBS) is a systemic approach for implementing a proactive schoolwide discipline and for improving students’ academic and behavioral outcomes by targeting the school’s organizational and social culture. With a multilevel approach, the present study evaluates the relative effectiveness of SWPBS on teachers’ perceptions of the student behavior (N = 3,295) across schools, teachers, and children using a multilevel approach. We assessed teacher perception of student problem behavior five times during a 3‐year implementation of SWPBS in 23 Dutch schools. Multilevel analyses not only revealed a small increase in perceived prosocial behavior and a small decrease in problems with peers, but also different effects across children, teachers, and schools. Effects were stronger for girls and for students with higher severity of perceived problems at baseline. At teachers’ level, higher mean baseline severity of perceived problems was associated with the reduced impact of SWPBS on perceived emotional problems and problems with peers. At the school level, effects were stronger for regular schools as compared with special needs schools

    Pharmacological basis and clinical evidence of dabigatran therapy

    Get PDF
    Dabigatran is an emerging oral anticoagulant which is a direct inhibitor of thrombin activity. It has been approved in the European Union and the United States of America for the prevention of thrombosis after major orthopedic surgery. It has also been approved by the American Food and Drug Administration and the European Medicines Agency for the prevention of stroke in chronic atrial fibrillation. Dabigatran provides a stable anticoagulation effect without any need to perform periodical laboratory controls. Of note, there is a growing amount of clinical evidence which shows its safety and efficacy. For these reasons, dabigatran may suppose a revolution in oral anticoagulation. However, two important limitations remain. First, it is contraindicated in patients with end-stage renal disease. Second, there is no evidence of the prevention of thrombosis in mechanical heart valves

    SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium

    Get PDF
    The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. Many large-scale surveys of the Galactic plane have been conducted recently, allowing for rapid progress in this field. Nevertheless, a sub-arcminute resolution global view of the large-scale distribution of molecular gas, from the diffuse medium to dense clouds and clumps, and of their relationshipto the spiral structure, is still missing. Aims. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. © 2017 ESO

    Anticoagulants and the Propagation Phase of Thrombin Generation

    Get PDF
    The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may provoke fewer bleeding episodes. More generally, the study shows that computational modeling of the response of core elements of the coagulation proteome to a physiologically relevant tissue factor stimulus may improve the monitoring of a broad range of anticoagulants

    ATLASGAL - Ammonia observations towards the southern Galactic Plane

    Get PDF
    Context: The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims: We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods: Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope. Results: We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions: A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1

    ATLASGAL-selected massive clumps in the inner Galaxy. VI. Kinetic temperature and spatial density measured with formaldehyde

    Get PDF
    Context: Formaldehyde (H2CO) is a reliable tracer to accurately measure the physical parameters of dense gas in star-forming regions. Aim: We aim to determine directly the kinetic temperature and spatial density with formaldehyde for the ~100 brightest ATLASGAL-selected clumps (the TOP100 sample) at 870 ?m representing various evolutionary stages of high-mass star formation. Methods: Ten transitions (J = 3–2 and 4–3) of ortho- and para-H2CO near 211, 218, 225, and 291 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope. Results: Using non-LTE models with RADEX, we derived the gas kinetic temperature and spatial density with the measured para-H2CO 321–220/303–202, 422–321/404–303, and 404–303/303–202 ratios. The gas kinetic temperatures derived from the para-H2CO 321–220/303–202 and 422–321/404–303 line ratios are high, ranging from 43 to >300 K with an unweighted average of 91 ± 4 K. Deduced Tkin values from the J = 3–2 and 4–3 transitions are similar. Spatial densities of the gas derived from the para-H2CO 404–303/303–202 line ratios yield 0.6–8.3 × 106 cm?3 with an unweighted average of 1.5 (±0.1) × 106 cm?3. A comparison of kinetic temperatures derived from para-H2CO, NH3, and dust emission indicates that para-H2CO traces a distinctly higher temperature than the NH3 (2, 2)/(1, 1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2CO line widths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2CO increase with time through the evolution of the clumps. The high temperature of the gas traced by H2CO may be mainly caused by radiation from embedded young massive stars and the interaction of outflows with the ambient medium. For Lbol/Mclump ? 10 L?/M?, we find a rough correlation between gas kinetic temperature and this ratio, which is indicative of the evolutionary stage of the individual clumps. The strong relationship between H2CO line luminosities and clump masses is apparently linear during the late evolutionary stages of the clumps, indicating that LH_2CO does reliably trace the mass of warm dense molecular gas. In our massive clumps H2CO line luminosities are approximately linearly correlated with bolometric luminosities over about four orders of magnitude in Lbol, which suggests that the mass of dense molecular gas traced by the H2CO line luminosity is well correlated with star formation
    corecore