76 research outputs found

    Tile vaults as integrated formwork for reinforced concrete: Construction, experimental testing and a method for the design and analysis of two-dimensional structures

    Get PDF
    Tile vaults are traditional, unreinforced masonry structures made of thin bricks (tiles), mortar and fast-setting cement or gypsum. They can be constructed without the need for a formwork, except at the boundaries, making them inherently economic. Tile vaults have historically provided a solution for the efficient construction of vaulted structures. Today, they can be used as permanent formwork for concrete shells, allowing for a significant reduction of the construction cost and waste produced, due to the possibility of reducing or even eliminating the need for traditional formwork. The concrete can be poured directly onto a tile-vaulted formwork to form a composite structure. This paper presents a technique for the construction of single-curvature shells consisting of a composite structure combining tile vaulting and reinforced concrete. A method for the design of these composite vaults and the assessment of their strength and stability against external loading is also presented. This method is based on limit analysis but takes into account the reinforcement’s contribution to the composite cross-section’s bending capacity. The equilibrium method is implemented computationally to provide fast results for the user. It provides graphical and intuitive results and opens the possibility for the future extension to fully three-dimensional problems. The design and structural analysis method is called Extended Limit Analysis for Reinforced Masonry (ELARM). Both the proposed construction technique and the computational method have been validated through experimental research. The feasibility of the building technique has been validated by the construction of two full-scale prototypes. In addition, the prototypes have been load-tested to failure to compare the results with those predicted by ELARM.Peer ReviewedPostprint (author's final draft

    A Deployable Mast for Adaptable Textile Architecture

    Full text link
    p. 252-263Proposed here is a concept for a deployable mast with angulated scissor units, for use in adaptable temporary architectural constructions. The adaptable structure serves as a tower or truss-like mast for a temporary tensile surface structure and doubles up as an active element during the erection process. The mast consists of scissor-like elements (SLEÂżs) which are an effective way of introducing a single D.O.F.(degree of freedom) mechanism into a structure, providing it with the necessary kinematic properties for transforming from a compact state to a larger, expanded state. The scissor units used here are not comprised of straight bars, but rather consist of angulated elements, i.e. bars having a kink angle. Although primarily intended for radially deployable closed loop structures, it is shown in this paper that angulated elements can also prove valuable for use in a linear threedimensional scissor geometry.De Temmerman, N.; Mollaert, M.; De Laet, L.; Van Mele, T.; Guldentops, L.; Henrotay, C.; Debacker, W.... (2009). A Deployable Mast for Adaptable Textile Architecture. Editorial Universitat PolitĂšcnica de ValĂšncia. http://hdl.handle.net/10251/650

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P &lt; 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Data management and modelling of complex interfaces in imperfect discrete-element assemblies

    No full text
    ISSN:2518-658

    Piecewise rigid displacement (PRD) method: a limit analysis-based approach to detect mechanisms and internal forces through two dual energy criteria

    No full text
    This paper proposes an extension of the Piecewise Rigid Displacement (PRD) method based on a new dual linear programming problem that minimises the complementary energy. Before, the PRD method had been applied to solve the kinematical problem for masonry-like structures composed of normal, rigid, no-tension (NRNT) material minimising the total potential energy. Specifically, the PRD method frames this minimum-energy search as a linear programming problem whose solutions are displacements and singular strain fields (cracks). Here, we show that the corresponding dual linear programming problem discretises the minimum of the complementary energy and returns, as solutions, admissible internal stress states compatible with the crack pattern obtained by solving the primal problem. Thus, these two minimum-energy criteria are dually connected, and their combined use allows coupling mechanisms and internal forces with settlements or homogeneous boundary displacements. This allows addressing different mechanical problems: equilibrium and stability of the reference configuration, effects of settlements, and mechanisms due to overloading (e.g. horizontal forces). Since the NRNT material represents the extension to continuum media of Heyman's material model, the PRD method offers an extremely fast, limit analysis-based, displacement approach that allows simultaneously finding mechanisms and compatible internal forces for any boundary condition, loads and geometry.ISSN:0093-641

    Curved-Crease Flat-Foldable Bending-Active Plate Structures

    No full text
    Curved-crease folded (CCF) bending-active plates efficiently form complex curvilinear geometries with structural applications. Instead, this research proposes joining stacked plates along common curved creases into flat-foldable configurations. These unfold with an accordion-like one-degree-of-freedom mechanism into corrugated spatial structures. The proposed system, termed curved-crease unfolding (CCU), allows for simple 2D prefabrication, flat-packed transport, and rapid on-site deployment. Its globally double-curved and articulated structural geometry extends the design space of CCF and finds application as structure and formwork. This research translates the fundamental geometric design principles of CCF to CCU for planar creases and demonstrates the design space for a multi-crease corrugated structure with non-zero thickness. A parametric model is implemented for the geometric construction and kinematic deployment in the COMPAS framework. Its deployment is validated by capturing the mechanical behavior with finite element simulation in the software SOFiSTiK. The paper demonstrates the non-developability conditions for convex synclastic and concave anticlastic creases. For the special cases of planar creases, angle correlations are formulated with direct inversion from CCF using discrete differential geometry. The trigonometric correlation for the kinematic deployment is applied to the discrete mesh representation. Inclining subsequent osculating planes reveal restricted geometric applicability regarding crease planarity. The non-zero thickness is modeled with an axis-shift approach. Finally, a rule catalog for global shape control is derived based on crease profiles and plane layouts with inclinations resulting in synclastic and anticlastic multi-crease designs. These would be challenging to construct otherwise and are enabled solely based on its formation principles
    • 

    corecore