195 research outputs found

    Resonantly Forced Inhomogeneous Reaction-Diffusion Systems

    Full text link
    The dynamics of spatiotemporal patterns in oscillatory reaction-diffusion systems subject to periodic forcing with a spatially random forcing amplitude field are investigated. Quenched disorder is studied using the resonantly forced complex Ginzburg-Landau equation in the 3:1 resonance regime. Front roughening and spontaneous nucleation of target patterns are observed and characterized. Time dependent spatially varying forcing fields are studied in the 3:1 forced FitzHugh-Nagumo system. The periodic variation of the spatially random forcing amplitude breaks the symmetry among the three quasi-homogeneous states of the system, making the three types of fronts separating phases inequivalent. The resulting inequality in the front velocities leads to the formation of ``compound fronts'' with velocities lying between those of the individual component fronts, and ``pulses'' which are analogous structures arising from the combination of three fronts. Spiral wave dynamics is studied in systems with compound fronts.Comment: 14 pages, 19 figures, to be published in CHAOS. This replacement has some minor changes in layout for purposes of neatnes

    Cerebral Microcirculatory Responses of Insulin-Resistant Rats are Preserved to Physiological and Pharmacological Stimuli

    Get PDF
    AbstractWe study a programming language with a built-in ground type for real numbers. In order for the language to be sufficiently expressive but still sequential, we consider a construction proposed by Boehm and Cartwright. The non-deterministic nature of the construction suggests the use of powerdomains in order to obtain a denotational semantics for the language. We show that the construction cannot be modelled by the Plotkin or Smyth powerdomains, but that the Hoare powerdomain gives a computationally adequate semantics. As is well known, Hoare semantics can be used in order to establish partial correctness only. Since computations on the reals are infinite, one cannot decompose total correctness into the conjunction of partial correctness and termination as is traditionally done. We instead introduce a suitable operational notion of strong convergence and show that total correctness can be proved by establishing partial correctness (using denotational methods) and strong convergence (using operational methods). We illustrate the technique with a representative example

    The design of an H∞/LPV active braking control to improve vehicle roll stability

    Get PDF
    International audienceThe active braking control system is an active safety system designed to prevent accidents and to stabilize dynamic manoeuvers of a vehicle by generating an artificial yaw moment using differential braking forces. In this paper, the yaw-roll model of a single unit heavy vehicle is used for studying the active braking system by using the longitudinal braking force at each wheel. The grid-based LPV approach is used to synthesize the H ∞ /LPV controller by considering the parameter dependant weighting function for the lateral acceleration. The braking monitor designs are proposed to allow the active braking system to react when the normalized load transfer at the rear axle reaches the criteria of rollover ±1. The simulation results indicate that the active braking system satisfies the adaptation of vehicle rollover in an emergency situation, with low braking forces and improved handling performance of the vehicle

    Breathing Spots in a Reaction-Diffusion System

    Full text link
    A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is observed to bifurcate to an oscillating spot when a control parameter is increased beyond a critical value. Further increase of the control parameter leads to the collapse and disappearance of the spot. Analysis of a bistable activator-inhibitor model indicates that the observed behavior is a consequence of interaction of the front with the boundary near a parity breaking front bifurcation.Comment: 4 pages RevTeX, see also http://chaos.ph.utexas.edu/ and http://t7.lanl.gov/People/Aric

    Common mechanisms of placental dysfunction in preeclampsia, gestational diabetes, and COVID-19 in pregnant women

    Get PDF
    COVID-19 infection, preeclampsia and gestational diabetes mellitus in pregnancy cause similar changes in the placenta and influence development of the fetus between conception and birth in gestation. Proper uterine and placental vascularization is essential for normal fetal development. The transplacental exchange is regulated and maintained by the placental endothelium. During placental implantation, the trophoblast differentiates into two distinct layers, the inner cytotrophoblast and outer syncytiotrophoblast, which are key elements of the human placental barrier. Proinflammatory cytokines exacerbate ischemic events and create an upward spiral of an inflammatory reaction in the placenta. Placental pathology in gestational COVID-19 shows desquamation and damage of trophoblast and chronic histiocytic intervillositis. Similar lesions also occur in gestational diabetes mellitus and preeclampsia. The systemic inflammatory response of the mother, the increased inflammation in the placenta and cytokine production by placental trophoblasts should be monitored throughout pregnancy. Placental angiogenesis can be evaluated by serum vascular endothelial growth factor, Annexin A2, placental growth factor or sclerostin. Tissue damage can be assessed by measuring levels of serum lactate dehydrogenase and myeloperoxidase. Blood flow can be monitored with three-dimensional Doppler and pathological changes can be documented with paraffin-embedded tissue sections stained with hematoxylin and eosin, and electron microscope images as well as immunohistochemistry tests for vascular endothelial growth factor, placental growth factor, sclerostin and Annexin A2. The damage of maternal and fetal vascular perfusion (villitis and fibrin deposition) is a common mechanism of gestational diseases. The placenta lesions liberate anti-endothelial factors that lead to anti-angiogenic conditions and are the common mechanism of maternal placental vascular malperfusion in gestational diseases. Keywords: dysfunction, inflammation, pathology, placenta, pregnancy, vascularizatio

    Implementation of Glider Guns in the Light-Sensitive Belousov-Zhabotinsky Medium

    Get PDF
    In cellular automata models a glider gun is an oscillating pattern of non-quiescent states that periodically emits traveling localizations (gliders). The glider streams can be combined to construct functionally complete systems of logical gates and thus realize universal computation. The glider gun is the only means of ensuring the negation operation without additional external input and therefore is an essential component of a collision-based computing circuit. We demonstrate the existence of glider gun like structures in both experimental and numerical studies of an excitable chemical system -- the light-sensitive Belousov-Zhabotinsky reaction. These discoveries could provide the basis for future designs of collision-based reaction-diffusion computers.Comment: Accepted for publication in Physical Review

    Infrared and kinematic properties of the substellar object G 196-3B

    Full text link
    We report unusual near- and mid-infrared photometric properties of G 196-3 B, the young substellar companion at 16 arcsec from the active M2.5-type star G 196-3 A, using data taken with the IRAC and MIPS instruments onboard Spitzer. G 196-3 B shows markedly redder colors at all wavelengths from 1.6 up to 24 micron than expected for its spectral type, which is determined at L3 from optical and near-infrared spectra. We discuss various physical scenarios to account for its reddish nature, and conclude that a low-gravity atmosphere with enshrouded upper atmospheric layers and/or a warm dusty disk/envelope provides the most likely explanations, the two of them consistent with an age in the interval 20-300 Myr. We also present new and accurate separate proper motion measurements for G 196-3 A and B confirming that both objects are gravitationally linked and share the same motion within a few mas/yr. After integration of the combined spectrophotometric spectral energy distributions, we obtain that the difference in the bolometric magnitudes of G 196-3 A and B is 6.15 +/- 0.10 mag. Kinematic consideration of the Galactic space motions of the system for distances in the interval 15-30 pc suggests that the pair is a likely member of the Local Association, and that it lay near the past positions of young star clusters like alpha Persei less than 85 Myr ago, where the binary might have originated. At these young ages, the mass of G 196-3 B would be in the range 12-25 Mjup, close to the frontier between planets and brown dwarfs.Comment: Accepted for publication in ApJ

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
    corecore