332 research outputs found

    Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period

    Get PDF
    Listeria monocytogenes is frequently found in foods and processing facilities, where it can persist, creating concerns for the food industry. Its ability to survive under a wide range of environmental conditions enhances the potential for cross-contamination of the final food products, leading to possible outbreaks of listeriosis. In this study, whole-genome sequencing (WGS) was applied as a tool to characterize and track 100 L. monocytogenes isolates collected from three food processing environments. These WGS data from environmental and food isolates were analyzed to (i) assess the genomic diversity of L. monocytogenes, (ii) identify possible source(s) of contamination, cross-contamination routes, and persistence, (iii) detect absence/presence of antimicrobial resistance-encoding genes, (iv) assess virulence genotypes, and (v) explore in vivo pathogenicity of selected L. monocytogenes isolates carrying different virulence genotypes. The predominant L. monocytogenes sublineages (SLs) identified were SL101 (21%), SL9 (17%), SL121 (12%), and SL5 (12%). Benzalkonium chloride (BC) tolerance-encoding genes were found in 62% of these isolates, a value that increased to 73% among putative persistent subgroups. The most prevalent gene was emrC followed by bcrABC, qacH-Tn6188, and qacC. The L. monocytogenes major virulence factor inlA was truncated in 31% of the isolates, and only one environmental isolate (L. monocytogenes CFS086) harbored all major virulence factors, including Listeria pathogenicity island 4 (LIPI-4), which has been shown to confer hypervirulence. A zebrafish embryo infection model showed a low (3%) embryo survival rate for all putatively hypervirulent L. monocytogenes isolates assayed. Higher embryo survival rates were observed following infection with unknown virulence potential (20%) and putatively hypovirulent (53 to 83%) L. monocytogenes isolates showing predicted pathogenic phenotypes inferred from virulence genotypes

    Wide-band optical field concentrator for low-index core propagation

    Get PDF
    We propose a novel chirped structure consisting of a low index polymer core bounded by modulated multilayer claddings, to realize an optical field concentrator with virtually zero propagation losses in a wide spectral range, independent of wave polarization. In spite of the absence of the total internal reflection mechanism, properly designed multilayer claddings ensure the achievement of unitary transmittance in a wide spectral range, including the widely used wavelengths for optical communications. Several cladding geometries obtained by varying the thicknesses of the cladding layers are reported and discussed.Comment: submitted to the Journal of the European Optical Societ

    Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV

    Full text link
    Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.Comment: 547 authors, 7 pages, 4 figures. Submitted to Phys. Rev. Lett.. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Employing the Metabolic “Branch Point Effect” to Generate an All-or-None, Digital-like Response in Enzymatic Outputs and Enzyme-Based Sensors

    Get PDF
    Here, we demonstrate a strategy to convert the graded Michaelis−Menten response typical of unregulated enzymes into a sharp, effectively all-or-none response. We do so using an approach analogous to the “branch point effect”, a mechanism observed in naturally occurring metabolic networks in which two or more enzymes compete for the same substrate. As a model system, we used the enzymatic reaction of glucose oxidase (GOx) and coupled it to a second, nonsignaling reaction catalyzed by the higher affinity enzyme hexokinase (HK) such that, at low substrate concentrations, the second enzyme outcompetes the first, turning off the latter’s response. Above an arbitrarily selected “threshold” substrate concentration, the nonsignaling HK enzyme saturates leading to a “sudden” activation of the first signaling GOx enzyme and a far steeper dose−response curve than that observed for simple Michaelis−Menten kinetics. Using the well-known GOx-based amperometric glucose sensor to validate our strategy, we have steepen the normally graded response of this enzymatic sensor into a discrete yes/no output similar to that of a multimeric cooperative enzyme with a Hill coefficient above 13. We have also shown that, by controlling the HK reaction we can precisely tune the threshold target concentration at which we observe the enzyme output. Finally, we demonstrate the utility of this strategy for achieving effective noise attenuation in enzyme logic gates. In addition to supporting the development of biosensors with digital-like output, we envisage that the use of all-or-none enzymatic responses will also improve our ability to engineer efficient enzyme-based catalysis reactions in synthetic biology applications

    Integrated annotation and analysis of genomic features reveal new types of functional elements and large-scale epigenetic phenomena in the developing zebrafish

    Get PDF
    Zebrafish, a popular model for embryonic development and for modelling human diseases, has so far lacked a systematic functional annotation programme akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created the first central repository to store and process zebrafish developmental functional genomic data. Our Data Coordination Center (https://danio-code.zfin.org) combines a total of 1,802 sets of unpublished and reanalysed published genomics data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements in development, including novel classes with distinct features dependent on their activity in time and space. We delineated the distinction between regulatory elements active during zygotic genome activation and those active during organogenesis, identifying new aspects of how they relate to each other. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predict functional relationships between them beyond sequence similarity, extending the utility of zebrafish developmental genomics to mammals

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe
    corecore