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ABSTRACT: Here, we demonstrate a strategy to convert the
graded Michaelis−Menten response typical of unregulated
enzymes into a sharp, effectively all-or-none response. We do
so using an approach analogous to the “branch point effect”, a
mechanism observed in naturally occurring metabolic net-
works in which two or more enzymes compete for the same
substrate. As a model system, we used the enzymatic reaction
of glucose oxidase (GOx) and coupled it to a second,
nonsignaling reaction catalyzed by the higher affinity enzyme
hexokinase (HK) such that, at low substrate concentrations,
the second enzyme outcompetes the first, turning off the
latter’s response. Above an arbitrarily selected “threshold” substrate concentration, the nonsignaling HK enzyme saturates leading
to a “sudden” activation of the first signaling GOx enzyme and a far steeper dose−response curve than that observed for simple
Michaelis−Menten kinetics. Using the well-known GOx-based amperometric glucose sensor to validate our strategy, we have
steepen the normally graded response of this enzymatic sensor into a discrete yes/no output similar to that of a multimeric
cooperative enzyme with a Hill coefficient above 13. We have also shown that, by controlling the HK reaction we can precisely
tune the threshold target concentration at which we observe the enzyme output. Finally, we demonstrate the utility of this
strategy for achieving effective noise attenuation in enzyme logic gates. In addition to supporting the development of biosensors
with digital-like output, we envisage that the use of all-or-none enzymatic responses will also improve our ability to engineer
efficient enzyme-based catalysis reactions in synthetic biology applications.

Enzymes exhibit extraordinary specificity, selectivity, and
catalytic activities, attributes that have led to their

widespread use in research, industry, and medicine. In synthetic
biology, for example, enzyme-catalyzed reactions are used for
drug discovery1 and the synthesis of biopharmaceuticals2 and
biofuels.3−5 Enzymes are also widely employed in biosensors as
recognition and signaling elements for the detection of specific
molecular analytes and confer to these platforms unprece-
dented performances in terms of sensitivity and selectivity.6−9

In recent years enzymatic reactions have been also used as the
basis for novel biomolecular logic systems that could lead to the
next generation of diagnostic. An example is the recently
proposed use of enzyme logic gates responding to multiple
inputs characteristic of specific diseases or injuries (i.e.,
biomarkers).10,11 The output of these enzyme logic gates can
activate counteractions (e.g., drug delivery) against the specific
disease, thus aiming to become integrated smart “sense/act”
(biosensor-bioactuator) platforms.12,13

Despite all their great attributes, enzymes also display some
limitations. For example, the dose−response curve associated
with the majority of enzymes follows the well-known
Michaelis−Menten equation, producing a fairly shallow,
hyperbolic increase in catalytic rate (the “response” or
“output”) with increasing substrate concentrations (the
“dose” or “input”). Because of the shape of this input−output
curve the “dynamic range” of an enzymatic response is
generally fixed: an 81-fold increase in substrate concentration
is needed to drive most enzymes from 10% to 90% of their
maximal product formation rate.14,15 This fixed dynamic range
limits the utility of enzyme-based technologies in applications
for which steeper dose−response curves are required. A steeper,
nearly all-or-none “digital” response would be especially desired
in biomolecular enzyme “logic gate” applications in order to
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reduce noise.16−19 In such logic operations, the normal
physiological level of the biomarker is defined as the logic-0
level, and pathological levels are defined as logic-1 values. The
separation between normal and pathological levels, however, is
often narrow and thus it is sometimes difficult to strictly define
the 0 and 1 logic-values of enzyme logic gates using the shallow
input-output curves associated with most enzymes.
Recently, the groups of Wang, Privman, and Katz have spent

efforts aimed at reducing the “noise” of biological logic gates,
proposing the use of filters based on different mechanisms
ranging from the use of enzymes with substrates that have self-
promoter properties,20 redox transformations,21 or pH-filters.22

Alternatively, the use of a biochemical filter that involves a
partial back-conversion of the product generating the output
signal was also proposed23 leading to a much better
discrimination between the 0 and 1 outputs. Of note, however,
this mechanism does not solve the problem related to the
definition of the 0- and 1-logic values of the inputs. That is, it
would be crucial to find a method to achieve a digital-like
output of enzyme systems at specific threshold concentrations
of the input. A general strategy to steepen the input/output
curves of enzyme-based response coupled with the ability to
arbitrarily tune the dynamic range of enzymatic outputs and so
the threshold at which the digital-like response is obtained
would thus prove of great value.
Several mechanisms have been invented by evolution to solve

the problem related to the graded outputs of enzymes. The best
known of these is positive allosteric cooperativity, which
involves two or more target binding sites that interact such that
the first binding events increase the affinity of those that follow.
Allostery, however, requires subtle binding-induced conforma-
tional and functional changes and thus this approach to
generating stepper input−output curves is likely expensive in
terms of the number of evolutionary steps required to generate
it and certainly quite challenging to engineer in artificial
systems. Fortunately for us biomolecular engineers, however,
cooperativity is not the only mechanism by which the input-
output curves of enzymes can be manipulated. Indeed, several
of the many approaches employed by nature in vivo to generate
switch-like enzymatic response, such as multistep phosphor-
ylation reactions, partial enzyme saturation and stoichiometric
inhibitors appear quite simple and are likely amenable to
exploitation in artificial technologies.14

Motivated by the above arguments here we have adapted the
metabolic “branch point effect”24,25 to achieve steep input−
output curves on enzyme-based systems. In this mechanism,
which nature employs to generate ultrasensitive responses in
some metabolic networks,24−28 two enzymes compete for a
single substrate. If one of these has a higher affinity (lower Km)
it will sequester the substrate, reducing the response of the
other enzyme. If the substrate concentration climbs above the
threshold level at which the higher affinity “depletant” enzyme
is saturated, then the output of the second enzyme will rise
dramatically, producing a nearly all-or-none response. Using
this mechanism we demonstrate an efficient and convenient
approach to convert the hyperbolic dose−response curve of
enzymes to a much steeper input/output response. We use the
classic glucose electrochemical enzyme sensor as a model
system to demonstrate and validate this approach and then
apply this strategy to improve the performance of an enzyme-
based AND logic gate.

■ MATERIALS AND METHODS

Apparatus, Electrodes, and Reagents. Amperometric
measurements were carried out using a Portable Bipotentiostat
μstat 200 (DropSens, Spain). Carbon-based screen-printed
electrodes (SPEs) were printed with a 245 DEK (Weymouth,
U.K.) screen printing machine using the following inks:
graphite-based ink (Elettrodag 421), silver ink (Electrodag
477 SS RFU) and insulating ink (Elettrodag 6018 SS). The
substrate was a polyester flexible film (Autostat HT5) obtained
from Autotype Italia (Milan, Italy). The printing procedure is
already described in previous papers.29 Each sensor consists of
three printed electrodes, a carbon working electrode, a silver
internal pseudoreference electrode and a carbon counter
electrode. The diameter of the working electrode was 0.3 cm,
resulting in an apparent geometric area of 0.07 cm2. All
chemicals from commercial sources were of analytical grade. All
solutions were prepared with 0.05 M phosphate buffer +0.1 M
KCl + 0.01 M MgCl2, pH 7.4, unless otherwise specified. The
standard solutions were made up daily in the same buffer.
Glucose oxidase (GOx) (EC 1.1.3.4, type VII, 185 U/mg),
horseradish peroxidase (HRP) (EC 1.11.1.7, 1550 U/mg),
hexokinase (HK) (EC 2.7.1.1, 200 U/mg), Adenosine 5′-
triphosphate disodium salt (ATP), o-phenylendiamine (OPD),
FeCl3, and K3Fe(CN)6 were all obtained from Sigma (St. Louis,
MO).

Preparation of Prussian Blue (PB) Modified Screen-
Printed Electrodes. Because of the high overpotential
required to detect H2O2, here we have used an electrochemical
mediator (Prussian Blue) capable of catalyzing the reduction of
H2O2 and thus allowing its detection at low applied
potentials.30,31 PB modification29 of SPEs was accomplished
by placing a drop (10 μL total volume) of a “precursor
solution” onto the working electrode area. This solution is a
mixture obtained by adding 5 μL of 0.1 M potassium
ferricyanide (K3Fe(CN)6) in 10 mM HCl to 5 μL of 0.1 M
ferric chloride in 10 mM HCl. The drop is carefully applied
exclusively on the working electrode area. The electrodes are
shaken gently on an orbital shaker for 10 min and then rinsed
with a few milliliters of 10 mM HCl. The electrodes are then
left for 90 min in an oven at 100 °C to obtain a more stable and
active layer of Prussian blue. The PB modified electrodes are
stored dry at room temperature in the dark and are stable for
several months.

Preparation of GOx Membrane Glucose Biosensor.
Glucose oxidase (GOx) was immobilized onto PB modified
SPEs using a procedure optimized in a previous work.29 Ten
microliters of a mixture of glutaraldehyde, Nafion, and a
solution of enzyme + BSA were added onto the working
electrode area and the solution was allowed to dry for 45 min at
room temperature; 150 μL of the mixture have the following
exact composition:

• 100 μL of enzymatic solution (4 mg of BSA and 1 mg of
GOx in 0.05 M phosphate buffer + 0.1 M KCl, pH 7.4;

• 20 μL of glutaraldehyde (2.5% in water);
• 30 μL of Nafion (5% in ethanol). The sensors prepared

with this procedure are stable and ready for glucose
measurement in batch and drop analysis.

Glucose Measurements with GOx Membrane Bio-
sensor. Amperometric batch measurements of glucose were
performed in a stirred phosphate buffer solution 0.05 M + KCl
0.1 M + MgCl2 0.01 M + HK 20 U/mL, pH 7.4 (10 mL) with
an applied potential of −0.05 V versus internal reference
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electrode (int. ref.). When a stable baseline current was
reached, glucose was added and the current variation was
recorded after 3 min. In a different embodiment the sensor was
tested using “drop” chronoamperometric measurement. In this
case a drop (70 μL) of the above buffer solution containing
different concentrations of glucose (see text for details) was
added onto the electrode held in horizontal position at an
applied potential of −0.05 V. The drop was added so as to
cover all the three electrodes and to close the circuit. The
current signal was measured after 3 min before and after three
successive additions of ATP (2.5, 5, 7.5 mM). For the sake of
clarity in all the figures the relative current (normalized) has
been used in the y-axis. The RSD% of the developed sensors is
∼7% (n = 4) and the actual current plateau values obtained are
0.53 (±0.04) and 0.96 (±0.08) μA respectively in drop and
batch measurements.
Composition of Logic Gate and Input Signals. The

AND logic gate consisted of a 2.5 mL phosphate buffer solution
0.05 M + KCl 0.1 M + MgCl2 0.01 M + GOX 10 U/mL + HRP
23 U/mL, pH 7.4. A concentration of 0.17 mM of OPD was
added to the solution to achieve a yes/no output signal. Of
note, this concentration does not correspond to the actual
glucose level (∼0.6 mM) at which we observe the steep
response for two reasons. The first is related to the fact that the

reaction between H2O2 and OPD catalyzed by HRP has a
stoichiometric ratio of 3:2 (H2O2/OPD).

32 The second is that
the real concentration of H2O2 produced by GOx does not
correspond to the concentration of glucose present in solution
because the enzymatic reaction is already in the plateau region.
Also in this case, for graphical purposes, normalized values were
used. When GOx was used in solution (i.e., for logic gates
applications) the plateau current value obtained in batch
measurements was 2.9 (±0.1) μA.

■ RESULTS

To validate and demonstrate our strategy, we have selected
glucose oxidase (GOx), an enzyme widely employed in sensors
for the detection of blood glucose levels. This sensor employs a
surface-confined glucose oxidase (GOx) to catalyze the
oxidation of glucose. The resultant production of hydrogen
peroxide is detected electrochemically, signaling the presence of
the substrate.6−9 As expected, the dose−response curve of the
glucose sensor obeys the Michaelis−Menten equation,
producing a Michaelis−Menten constant (Km) of 0.8 mM
(Figure 1, top). To convert the hyperbolic dose−response
curve associated with GOx catalyzed reaction into a steeper,
digital-like response, we have created a “branch point effect”
using hexokinase (HK) as the competing “depletant” enzyme

Figure 1. Here we convert the hyperbolic dose−response curve of an enzyme-based sensor into a steep all-or-none digital-like response by
employing the “branch point effect”, a mechanism that occurs in some metabolic networks, where two enzymes compete for the same substrate.24−26

(top) As our testbed system we have used the well-known glucose amperometric sensor, which contains a surface-confined glucose oxidase (GOx)
that shows a classic Michaelis−Menten response with a Km of 0.8 mM. (bottom) By coupling this enzyme system with another higher affinity
competing “depletant” enzyme (here hexokinase, HK) we can convert the hyperbolic Michaelis−Menten response of GOx into a digital-like output.
When the total glucose concentration is equal or lower to the concentration of ATP, all the glucose is converted by HK to glucose-6-phosphate (G-
6-P). The glucose is thus sequestered from the GOx, precluding signaling. When the total glucose concentration surpasses the concentration of ATP
(the HK catalyzed reaction is saturated), a threshold response is achieved in which further addition of glucose drastically raises its effective
concentration. This threshold effect generates a “pseudo-cooperative” dose−response curve in which the output signal arises much more rapidly than
would occur in the absence of HK and ATP. In these operative conditions ([ATP] = 1.25 mM) the range of glucose concentration at which this
sharp transition occurs is compressed to less than 2-fold. The use of the logarithmic scale in the x-axes (right) as opposed to a linear scale (center)
renders it easier to evaluate the narrowing of the dose−response curve.
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(Figure 1, bottom). HK, which possesses a much greater
affinity for glucose than that of GOx,33 will sequester glucose by
converting it to glucose-6-phosphate, a species that is not
recognized by GOx. [Of note, the glucose will also associate
much faster to the free HK than to the electrode-bound GOx
thus further increasing the HK catalytic rate]. Using this
approach we readily compress the hyperbolic dose−response
curve of this enzyme-based sensor14,15,24 by 1 order of
magnitude, pushing the normally 81-fold dynamic range of
the sensor to less than 2-fold (Figure 1, bottom).
The steepness of the input/output curve can be controlled by

altering the ATP concentration. Higher sensitivities (steeper
curves) occur when the ATP level is above the saturation limit
of GOx ([ATP]/Km > 1). Conversely, when the ATP
concentration is in the range where GOx responds linearly to
glucose levels the steepness of the resulting dose−response
curve is only slightly higher than that in absence of ATP. To
show this we have fitted our data to obtain pseudo-Hill
coefficients, which, although our system is not classically
cooperative, are analogous to the Hill coefficient commonly
used to describe cooperative enzymatic systems.27,34 As
expected, we observe a pseudo-Hill coefficient near unity (nH
= 1.7) for a glucose calibration curve obtained in the absence of
ATP (Figure 2). [The slight deviation from the theoretical

value of 1 is likely due to the limiting oxygen concentrations
present in aqueous solution.7] Upon the addition of ATP, the
pseudo-Hill coefficient climbs, reaching 2.1 at [ATP] = 0.1 mM
([ATP]/Km = 0.125) before ultimately reaching 13.3 at [ATP]
= 3 mM ([ATP]/Km = 3.75) (Figure 2).
In addition to control the steepness of the dose−response

curve, we can also control the threshold limit at which HK
sequesters glucose (and thus control the threshold at which the
sensor signals) by varying the concentration of ATP in the
reaction mix. Specifically, HK sequesters glucose only when the
ratio of ATP to glucose is more than one (Figure 2, left). That
is, at [ATP] = [glucose] the HK catalyzed reaction is saturated
and the injection of any additional glucose produces a large rise
in the relative concentration of free glucose, which can be now
recognized by GOx thus generating an output signal. This
provides a valuable tool to tailor the dynamic range over which
the enzymatic output is activated.

The ability to achieve digital-like enzymatic responses,
together with the possibility to arbitrarily tune the substrate
concentration at which this threshold response can occur,
should significantly improve the utility of enzymes in many
applications ranging from enzymatic sensors to enzyme-logic
gates. To demonstrate possible applications, we have employed
our testbed glucose sensor and have constructed four glucose
sensors, each of which we placed in a solution containing
varying concentrations of ATP. Challenging them with
injections of increasing glucose concentration, we create a set
of sensors triggered at different glucose levels (see colored
regions in Figure 3, left) within the clinically relevant range of

glycaemic levels in blood. In a different embodiment of this
same strategy we have used a single glucose sensor and have
performed three consecutive measurements following the
injection of 3 different ATP concentrations (Figure 3, right).
Doing so we were able to easily obtain high precision
measurements of the concentration of glucose in the sample.
Moreover, the metabolic branch point strategy not only enables
a digital-like enzymatic response but also allows us to arbitrarily
shift the useful dynamic range of the enzyme to higher, relevant
concentrations than those defined by the Km of the enzyme. As
normal physiological concentrations of a biomarker (here
glucose) can be higher than the Km of the specific enzyme used,
this can preclude accurate differentiation between normal and
pathological concentrations. And while this problem has been
efficiently overcome for glucose sensors by the introduction of
diffusion mediators that push the sensor’s dynamic range in line
with physiologically relevant levels,7 the strategy we propose
can be of utility in other specific applications such as those
employing enzymes for logic systems.
To demonstrate the utility of the “branch point effect”

strategy to logic gate systems, we have applied it to a previously
described enzyme-based AND logic gate.10,11,35 Ideally, such
logic gates should produce a yes/no (1/0) outcome that

Figure 2. Steepness of the dose−response curve and the substrate
concentration at which the threshold response is observed are both
strong functions of the activity of the depletant enzyme. (left) Using
HK as our depletant we can easily tune these values by varying the
ATP concentration in the reaction mix (here we have employed 0.1,
0.3, 1.25, 3 mM ATP). To quantify the steepness of these dose
response curves we have fitted them to the Hill equation to define
pseudo-Hill coefficients.34 (right) The pseudo-Hill coefficient
increases monotonically as the [ATP]/Km ratio increases (by
increasing the concentration of ATP), reaching 13 when this ratio is
at 3.75 (at 3 mM ATP).

Figure 3. Extending the dynamic range of glucose sensors using
multiple all-or-none glucose sensors triggered at different clinically
relevant glucose concentrations. (left) Using our metabolic branch
point strategy, we engineered four glucose sensors with variable
threshold concentration by simply employing different ATP
concentrations in the reaction mix (1.25, 2.5, 5, 10 mM). The colored
regions define the glucose level at which each sensor is triggered.
(right) In a different embodiment of this strategy, we used a single
sensor and tested it after successive additions of ATP in the sample
solution. A drop of solution containing different physiologically
relevant concentrations of glucose (2, 4, 6, and 8 mM) and HK was
placed on the sensor and the current was measured before and after
three successive injections of ATP (2.5, 5, 7.5 mM). A yes/no
response depending on the glucose level present in the sample was
observed.
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corresponds to a “Sense/Act” or “Sense/Diagnose/Treat”
response.10,11 Historically, however, a limitation of these
systems was that the graded response signal observed with
most enzymes renders it difficult to unequivocally define the 0
and 1 logic values of the biomolecular gate. Indeed, in the
literature the 0 value of the input signal is usually defined as the
complete absence of the biomaterial, a situation that rarely
occurs under normal physiological conditions. Logic 1 values
are likewise typically set to substrate concentrations well above
those found even under pathological conditions. The ability to
generate steeper, more digital enzymatic input/output curves
and the possibility to tune the concentration of the input at
which we observe the digital output could thus prove of utility
in such applications. For these reasons, several efforts have been
recently focused on the development of novel filtering systems
to achieve digital output from enzymatic systems.16−23 Here we
demonstrate for the first time that by using the “branch point
effect” strategy, we can activate a model enzyme-logic gate in an
all-or-none fashion at arbitrarily fixed input concentrations. To
demonstrate this, we have applied our strategy to a classic
enzyme-based AND logic gate which was recently described in
several works.10,11,35 This logic gate, in its original format, is
intended to give an output signal only in presence of two
specific inputs (GOx, input A and glucose, input B). Although
this is a very simple and basic example of enzyme logic gate it
may give useful insights regarding the possibility to adopt this
strategy for other, more complex, examples. As expected, the
output signal of this logic gate (at fixed concentrations of GOx,
input A, and varying the concentration of glucose, input B) is
shallow. To define the 0- and 1-logic output values, we then
define the threshold level using the branch-point effect. We did
so by employing a biochemical filter composed of horseradish
peroxidase (HRP) and o-phenylendiamine (OPD). The
enzymatic reaction catalyzed by HRP sequesters the output
signal (i.e., H2O2) of the AND logic gates (Figure 4, top). OPD
in this case acts as the threshold level at which this
sequestration event can occur. In fact, when the total
concentration of H2O2 produced by the logic gate equals or
is lower the OPD level the output signal will be effectively 0. Of
note, this reaction is characterized by a stoichimoetric ratio of
3:2 (H2O2/OPD)32 so this ratio has to be taken in
consideration for a correct evaluation of the threshold level.
As soon as the total concentration of H2O2 surpasses the OPD
level we will observe a steep threshold response, which can be
defined as 1 output (Figure 4, bottom). Only input values of
glucose above a certain threshold (in the presence of GOx) will
result in the activation of the logic gate. The digital-like
transition between the 0 and 1 output state and the possibility
of tuning this transition by varying the concentration of the
filter represents an important step toward the design of
multienzyme-catalyzed cascades logic gates with strong,
unequivocal “sense/act” behavior.

■ CONCLUSIONS
Here, we have demonstrated a novel strategy to convert the
graded Michaelis−Menten response of a typical enzyme-based
system into a sharp all-or-none response. Our approach is
inspired by the “branch point effect”, a situation that occurs in
some metabolic networks in which two or more enzymes
compete for the same substrate.24−28 We first used the well-
known glucose amperometric sensor as a model system to
demonstrate this strategy and its possible applications.
Specifically, we coupled the signaling enzymatic reaction of

GOx with a second, nonsignaling reaction catalyzed by the
higher affinity enzyme HK. This latter reaction sequesters the
target analyte up to an arbitrarily selected threshold
concentration above which the signaling reaction is activated
producing a steep dose−response curve. As a result we
steepened the normally graded response of GOx until,
ultimately, obtaining a discrete yes/no output similar to that
of a multimeric cooperative enzyme with a Hill coefficient of
greater than 13. The steep dose response curves we achieve
open the door to a number of new biosensor applications.
Perhaps the most obvious application, as demonstrated here,
would be the creation of enzyme logic gates with effectively
digital-like outputs, a field that has attracted increasing interest
during last years. Additionally, the monitoring of drugs with
narrow therapeutic windows, which requires high precision
dosage to optimize their therapeutic effect, would be greatly
improved with the development of steeper input/output
biosensors. Another application provided by “branch point
effect” is that it can help to extend the dynamic range of
enzyme-based sensor above the saturation level of the enzyme.
And while this problem has been cleverly solved for glucose
sensors using diffusion mediators,7 the demonstration of
alternative methods is of utility. Here we showed how this
strategy allows us to finely and arbitrarily tune the glucose

Figure 4. “Branch point effect” mechanism can be used as effective
biomolecular filter for enzyme-based logic gates applications. (top)
Here we show this by using an enzyme-based AND Boolean logic gate
which is activate in an all-or-none fashion only at specific
concentration of glucose (input A) and in the presence of GOx
(input B). Here horseradish peroxidase (HRP) sequesters the output
signal (H2O2) generated by the logic gate until a threshold level
represented by the concentration of the HRP cosubstrate (o-
phenylendiamine: OPD). (bottom) With this strategy we produce a
steep, all-or-none digital output at an arbitrarily selected concen-
trations of input A, a response far more suitable for enzyme-based
logic gate applications than the graded response typically produced by
enzymes. Here we used a fixed concentration of GOx (input B) and
increasing concentration of glucose (input A) in presence of HRP.
When OPD is absent we observe the curve expected for simple,
noncooperative binding (no filter). This converts into an all-or-none
curve in presence of OPD (+filter).
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concentration range over which the sensor is activated by
controlling the secondary depleting reaction.
The branch-point effect is also likely versatile: the wide range

of enzymatic reactions targeting the same substrate offers the
possibility of using this strategy with a wide range of relevant
targets. For example, the same digital-like behavior could be
obtained by coupling a signaling oxidase enzyme and a
nonsignaling dehydrogenase enzyme targeting the same
substrate. The concentration of the dehydrogenase cofactor
(either NAD+ or NADP+) would represent the threshold level
at which we will observe the sharp response. We also note that
a similar result would be achieved by using nonenzymatic
depletant element. For example, a wide variety of periplasmic
binding proteins are known to bind with high affinity several
enzymatic substrates, including amino acids, peptides, simple
and complex sugars, inorganic ions and metals.36

Despite the above advantages, the strategy we propose is not
without limitation. For example, the generation of the all-or-
none response is achieved at the cost of a reduced affinity as the
minimum target concentration giving a detectable signal
(detection limit) is shifted toward higher concentrations.
Moreover, we also note that the digital-like response is
achieved at the cost of additional reagents, a drawback that
can limit the applicability of the approach we propose. Finally, a
careful control of the concentration of the reagents involved in
the depleting reaction must be performed in order to avoid
secondary reactions, a problem that can be particularly crucial
in complex samples. This is for example true for the specific
model system we have employed here. The use of a depleting
reaction based on the use of ATP as substrate requires the
control of the possible effect that endogenous ATP (or of
species that can react with it) can have in the definition of the
threshold response. Despite this, the endogenous level of ATP
in clinical samples is normally very low (in the micromolar
range)37,38 and thus its effect for this specific application is
negligible.
To conclude, it is worthwhile to note that the branch point

effect is only one of many mechanisms that nature uses to
achieve bistability in natural systems, allowing signaling
networks to convert continuously graded inputs into discrete
outputs.39−41 These include positive feedback loops and
double- negative feedback loops.42−45 Exploitation of these
other strategies in the laboratory would likely also give rise to
new tools to achieve all-or-none enzymatic systems and would
greatly impact our ability to engineer more efficient enzyme-
based catalysis reactions in synthetic biology applications.
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