45 research outputs found

    Pressure-induced volumetric negative thermal expansion in CoZr2 superconductor

    Full text link
    We investigate the thermal expansion and superconducting properties of a CuAl2-type (tetragonal) superconductor CoZr2 under high pressures. We perform high-pressure synchrotron X-ray diffraction in a pressure range of 2.9 GPa < P < 10.4 GPa and discover that CoZr2 exhibits volumetric negative thermal expansion under high pressures. Although the uniaxial positive thermal expansion (PTE) along the a-axis is observed under ambient pressure, that is suppressed by pressure, while the large uniaxial negative thermal expansion (NTE) along the c-axis is maintained under the pressure regime. As a result of a combination of the suppressed uniaxial PTE along the a-axis and uniaxial NTE along the c-axis, volumetric negative thermal expansion is achieved under high pressure in CoZr2. The mechanisms of volumetric NTE would be based on the flexible crystal structure caused by the soft Co-Co bond as seen in the iso-structural compound FeZr2, which exhibits uniaxial NTE along the c-axis. We also perform high-pressure electrical resistance measurements of CoZr2 to confirm the presence of superconductivity under the examined pressure regime in the range of 0.03 GPa < P < 41.9 GPa. We confirm the presence of superconductivity under all pressures and observe dome-like shape pressure dependence of superconducting transition temperature. Because of the coexistence of two phenomena, which are volumetric NTE and superconductivity, in CoZr2 under high pressure, the coexistence would be achievable under ambient pressure by tuning chemical compositions after our present observation.Comment: 22 pages, 7 figures, supporting informatio

    Isolation and characterization of naïve follicular dendritic cells

    Get PDF
    Follicular dendritic cells (FDC) are specialized antigen-presenting cells to cognate B cells in the follicle of the lymphoid tissues. FDC also support survival and proliferation of the B cells, leading to the germinal center formation. FDC therefore play a central role in humoral immune responses. However, molecular and functional characteristics of FDC are largely unknown, because it is difficult to isolate and analyze FDC due to a very small number of FDC in the lymphoid tissues and the fragility by mechanical and chemical stresses in vitro. In this report, we established a novel method for FDC isolation from the spleen of naïve mice by flow cytometry and analyzed the phenotypical and functional characteristics. The isolated FDC, which accounted for ∼0.2% of the spleen cells of naïve mice, were CD45−, FDC-M2+, and ICAM-1+, and supported the survival and LPS-induced proliferation of B cells. We also showed that a neutralizing antibody against B cell activating factor TNF family (BAFF) suppressed FDC-dependent B cell proliferation in the presence of LPS, but not survival, demonstrating the evidence that FDC-derived BAFF is involved in B cell proliferation

    Hospital and clinic cooperation for the treatment of rheumatoid arthritis in Okayama Prefecture, Japan

    Get PDF
    Objective: To survey the current status and problems of cooperation between clinics and hospitals in Okayama Prefecture, Japan for the treatment of rheumatoid arthritis (RA).  Methods: We distributed a questionnaire to 300 of the 983 Okayama Prefecture clinics that had either an internal medicine or orthopedic surgery department, from December 2013 to February 2014. The questionnaire covered practice pattern for RA treatment in clinics, current status of the hospital and clinic cooperation, and acceptance of the biologic therapy.  Results: One hundred clinics responded to the questionnaire. Seventy percent of the clinics reported making referrals to rheumatologists before the initiation of RA treatment, and half of the other 30% of the clinics administered methotrexate as the first-line treatment for RA by their own decision. Sixty-six clinics cooperated with flagship hospitals, conducting medical and laboratory examinations, providing prescriptions, and treating common diseases of patients. These clinics expected the cooperating rheumatologists to follow-up patients every 3 to 6 months and to make the diagnosis, make decisions regarding RA treatment changes, and perform surgery. Seventy-one percent of the clinics responded that cooperation with a hospital is possible even for patients who are administered biologics. As reasons for no cooperation with the flagship hospitals, clinics noted the lack of information about rheumatologists in the area and recent trends in the management of RA.  Conclusion: The current study reported, for the first time, the actual conditions of management of RA in clinics, as well as future problems of hospital and clinic cooperation in Okayama Prefecture

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

    Get PDF
    Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized

    Four‐dimensional‐STEM analysis of the phyllosilicate‐rich matrix of Ryugu samples

    Get PDF
    Ryugu asteroid grains brought back to the Earth by the Hayabusa2 space mission are pristine samples containing hydrated minerals and organic compounds. Here, we investigate the mineralogy of their phyllosilicate-rich matrix with four-dimensional scanning transmission electron microscopy (4D-STEM). We have identified and mapped the mineral phases at the nanometer scale (serpentine, smectite, pyrrhotite), observed the presence of Ni-bearing pyrrhotite, and identified the serpentine polymorph as lizardite, in agreement with the reported aqueous alteration history of Ryugu. Furthermore, we have mapped the d-spacings of smectite and observed a broad distribution of values, ranging from 1 to 2 nm, with an average d-spacing of 1.24 nm, indicating significant heterogeneity within the sample. Such d-spacing variability could be the result of either the presence of organic matter trapped in the interlayers or the influence of various geochemical conditions at the submicrometer scale, suggestive of a range of organic compounds and/or changes in smectite crystal chemistry

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss
    corecore