84 research outputs found

    Liquid biopsy is a promising tool for genetic testing in idiopathic pulmonary fibrosis

    Get PDF
    Liquid biopsy, which allows the isolation of circulating cell-free (ccf) DNA from blood, is an emerging noninvasive tool widely used in oncology for diagnostic and prognosis purposes. Previous data have shown that serum cfDNA discriminates idiopathic pulmonary fibrosis (IPF) from other interstitial lung diseases. Our study aimed to measure plasma levels of ccfDNA in 59 consecutive therapy-naive and clinically stable IPF patients. The single nucleotide polymorphism (SNP) of the MUC5B gene promoter (rs35705950), associated with increased susceptibility of developing IPF, has been sought in plasma cfDNA and genomic DNA for comparison. Thirty-five age-and sex-matched healthy volunteers were recruited as the control group. Our results show that concentrations of small-size ccfDNA fragments were significantly higher in IPF patients than in controls and inversely correlated with lung function deterioration. Moreover, the median level of 104 ng/mL allowed discriminating patients with mild disease from those more advanced. The rs35705950 polymorphism was found in 11.8% of IPF patients and 8% of controls, with no differences. Complete concordance between ccfDNA and genomic DNA was detected in all control samples, while four out of seven IPF cases (57%) carrying the rs35705950 polymorphism were discordant from genomic DNA (7% of total IPF). Liquid biopsy is a suitable tool with optimistic expectations of application in the field of IPF. In analogy with cancer biology, finding some discrepancies between ccfDNA and genomic DNA in IPF patients suggests that the former may convey specific genetic information present in the primary site of the disease

    Limitations in a frataxin knockdown cell model for Friedreich ataxia in a high-throughput drug screen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacological high-throughput screening (HTS) represents a powerful strategy for drug discovery in genetic diseases, particularly when the full spectrum of pathological dysfunctions remains unclear, such as in Friedreich ataxia (FRDA). FRDA, the most common recessive ataxia, results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur cluster (ISC) proteins activity, due to a partial loss of frataxin function, a mitochondrial protein proposed to function as an iron-chaperone for ISC biosynthesis. In the absence of measurable catalytic function for frataxin, a cell-based assay is required for HTS assay.</p> <p>Methods</p> <p>Using a targeted ribozyme strategy in murine fibroblasts, we have developed a cellular model with strongly reduced levels of frataxin. We have used this model to screen the Prestwick Chemical Library, a collection of one thousand off-patent drugs, for potential molecules for FRDA.</p> <p>Results</p> <p>The frataxin deficient cell lines exhibit a proliferation defect, associated with an ISC enzyme deficit. Using the growth defect as end-point criteria, we screened the Prestwick Chemical Library. However no molecule presented a significant and reproducible effect on the proliferation rate of frataxin deficient cells. Moreover over numerous passages, the antisense ribozyme fibroblast cell lines revealed an increase in frataxin residual level associated with the normalization of ISC enzyme activities. However, the ribozyme cell lines and FRDA patient cells presented an increase in Mthfd2 transcript, a mitochondrial enzyme that was previously shown to be upregulated at very early stages of the pathogenesis in the cardiac mouse model.</p> <p>Conclusion</p> <p>Although no active hit has been identified, the present study demonstrates the feasibility of using a cell-based approach to HTS for FRDA. Furthermore, it highlights the difficulty in the development of a stable frataxin-deficient cell model, an essential condition for productive HTS in the future.</p

    How do cardiologists select patients for dual antiplatelet therapy continuation beyond 1 year after a myocardial infarction? Insights from the EYESHOT Post-MI Study

    Get PDF
    Background: Current guidelines suggest to consider dual antiplatelet therapy (DAPT) continuation for longer than 12 months in selected patients with myocardial infarction (MI). Hypothesis: We sought to assess the criteria used by cardiologists in daily practice to select patients with a history of MI eligible for DAPT continuation beyond 1 year. Methods: We analyzed data from the EYESHOT Post-MI, a prospective, observational, nationwide study aimed to evaluate the management of patients presenting to cardiologists 1 to 3 years from the last MI event. Results: Out of the 1633 post-MI patients enrolled in the study between March and December 2017, 557 (34.1%) were on DAPT at the time of enrolment, and 450 (27.6%) were prescribed DAPT after cardiologist assessment. At multivariate analyses, a percutaneous coronary intervention (PCI) with multiple stents and the presence of peripheral artery disease (PAD) resulted as independent predictors of DAPT continuation, while atrial fibrillation was the only independent predictor of DAPT interruption for patients both at the second and the third year from MI at enrolment and the time of discharge/end of the visit. Conclusions: Risk scores recommended by current guidelines for guiding decisions on DAPT duration are underused and misused in clinical practice. A PCI with multiple stents and a history of PAD resulted as the clinical variables more frequently associated with DAPT continuation beyond 1 year from the index MI

    The LOFT mission concept: a status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission

    Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon

    Get PDF
    Large liquid argon detectors offer one of the best avenues for the detection of galactic weakly interacting massive particles (WIMPs) via their scattering on atomic nuclei. The liquid argon target allows exquisite discrimination between nuclear and electron recoil signals via pulse-shape discrimination of the scintillation signals. Atmospheric argon (AAr), however, has a naturally occurring radioactive isotope, 39Ar, a β emitter of cosmogenic origin. For large detectors, the atmospheric 39Ar activity poses pile-up concerns. The use of argon extracted from underground wells, deprived of 39Ar, is key to the physics potential of these experiments. The DarkSide-20k dark matter search experiment will operate a dual-phase time projection chamber with 50 tonnes of radio-pure underground argon (UAr), that was shown to be depleted of 39Ar with respect to AAr by a factor larger than 1400. Assessing the 39Ar content of the UAr during extraction is crucial for the success of DarkSide-20k, as well as for future experiments of the Global Argon Dark Matter Collaboration (GADMC). This will be carried out by the DArT in ArDM experiment, a small chamber made with extremely radio-pure materials that will be placed at the centre of the ArDM detector, in the Canfranc Underground Laboratory (LSC) in Spain. The ArDM LAr volume acts as an active veto for background radioactivity, mostly γ-rays from the ArDM detector materials and the surrounding rock. This article describes the DArT in ArDM project, including the chamber design and construction, and reviews the background required to achieve the expected performance of the detector

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    3D stc sensors with different strip isolation schemes and substrate materials

    No full text
    For the innermost layers of the foreseen upgrade to the ATLAS tracker, charge trapping will be the main limitation in terms of the sensor lifetime. A possible solution to the degradation of the charge collection efficiency (CCE) could be the use of 3D detectors. In 3D detectors the electrodes are processed not just at the surface of the sensor, but they extend partly or completely through the silicon bulk. The distance between the columnar electrodes of 3D detectors can be adjusted to the expected fluence range. We designed and constructed prototype modules comprising ATLAS SCT front-end electronics and 3D single-type column (stc) p-type strip detectors with different strip isolation techniques and different substrate materials. With a strip length of 18.4 mm these sensors could be a radiation hard option for the innermost short strip region of the inner detector in the upgraded ATLAS experiment. We characterised these 3D stc p-type sensors in terms of their noise behaviour and hence their effective capacitance as a function of applied bias voltage at a read-out speed of 40 MHz which is also anticipated for sLHC. Employing an IR laser and automated x–y stages with micrometer resolution we characterised the sensors regarding the CCE in dependence of the bias voltage and the IR laser position relative to the sensors before irradiation
    corecore