747 research outputs found

    Novel analytical tool for a univocal flavor and fragrance identification: Gas chromatography coupled with condensed-phase FTIR and TOF mass spectrometry

    Get PDF
    The correct identification of flavor and fragrance (F&F) compounds in real samples is still a challenge despite the huge number of different instruments available. Only a slight structural difference can cause a very different sensory profile, for example in the case of geometric isomers, it is generally considered that (Z)-isomers have a more pleasant and natural odor than (E) ones.                The most frequently used instrument for the analysis of volatiles is gas chromatography (GC) coupled with mass spectrometry (MS). MS may still fail to adequately identify compounds because of the lack of specificity of spectra (terpenes, isomers). MS spectral searches can be supported with linear retention index (LRI) information which, although not in all cases, could resolve the problem of possible misidentification of target molecules.                Condensed phase FTIR can be a complementary detection system to MS, and its application could allow a very detailed structural elucidation. The novelty of this instrument is that the separated compounds are condensed in small, singular spots on a rotating disc, thus the distortion of spectra is eliminated, giving an excellent spectral resolution. Through the specificity of the “fingerprint” region around 1100 cm-1, even positional isomers and diastereomers could be distinguished.                Coupling condensed-phase FTIR after a simple post-column split to a GC-TOF MS, three independent analytical information can be obtained about the target compound: retention behavior (LRI), MS and FTIR spectra. Exploiting the enhanced resolution of the TOF MS and discriminating power of FTIR a unique TOF MS/FTIR spectral library with more than 1500 F&F compounds was developed, including also experimental LRI. Boosting this comprehensive information collection, a universal post-run software, namely CromatoPlus Spectra, performs the library search using the FTIR spectral similarity and LRI filter, simultaneously. A GC-TOF MS/FTIR method was optimized for the analysis of real essential-oil and perfume samples. Using the F&F library with embedded LRI, a reliable peak assignment was obtained for each separated compound

    Antitumor immunization of mothers delays tumor development in cancer-prone offspring

    Get PDF
    Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T–cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable

    Cannabis terpene profiling in therapeutic products by means of gas chromatography coupled with mass spectrometry

    Get PDF
    It is well-known that cannabinoids provide non-toxic medical benefits and have an effective role in the treatment of chronic pain due to their interaction with the endocannabinoid system. Recently, in addition to the “classical” therapeutic usage, like inhalation or ingestion of cannabis, newer ways of cannabinoid-based products utilization are also being developed. The skin application of topicals including balms, lotions, and oils that are infused with active cannabinoids is a minimally invasive method for the medical cannabis use and allows them to be absorbed directly into the affected area for faster and more focused relief.                According to the terpene profile, the medicinal effect of cannabinoids can change significantly. Terpenes, in fact, have various roles: can make the adsorption of cannabinoids faster, or lessen their effect, interact with cannabinoids, decrease the side-effects of the cannabinoid therapy, and help to relax and calm the patient.                Gas chromatography-mass spectrometric (GC-MS) analysis is a powerful analytical tool for detailed characterization of the volatile fractions of any kind of complex sample. For the identification, mass spectral databases are used, but in many cases, misidentification could occur due to the high spectral similarity of terpenes. The Linear Retention Index (LRI) approach combined with conventional mass spectral search provide a more reliable solution for peak assignment. The FFNSC 4.0 (Flavour and Fragrance Natural and Synthetic Compounds), a dedicated MS Library with embedded LRI information, including almost all of the 140 known cannabis terpenes can be a great support in terpene profiling, thereby also in the optimization of the therapy.                Aroma constituents of cannabinoid-containing medicinal products were analyzed by GC-MS. To obtain the characteristic volatile fraction, sample preparation method was optimized for each sample type. Terpenes were identified using FFNSC 4.0 database

    Irinotecan- vs. Oxaliplatin-Based Doublets in KRASG12C-Mutated Metastatic Colorectal Cancer-A Multicentre Propensity-Score-Matched Retrospective Analysis

    Get PDF
    The sensitivity to chemotherapy of KRASG12C-mutated colorectal cancer has been investigated to verify whether the combination of chemotherapy plus a KRASG12C-inhibitor might become the standard of care in the near future. To this aim, the present retrospective study was designed to assess the performance of irinotecan vs. oxaliplatin in the first-line treatment of KRASG12C-mutated mCRC patients and provide support for first-line decision making. In this setting of patients treated with FOLFIRI or FOLFOX +/ bevacizumab, irinotecan and oxaliplatin were compared using a propensity-score-matched analysis. the survival superiority of irinotecan was demonstrated over oxaliplatin in KRASG12C-mutated patients, while no differences were observed in a control cohort of KRASG12D-mutated patients. this should be considered when investigating chemotherapy plus targeted agent combinations.background: KRAS(G12C)-mutated metastatic colorectal cancer (mCRC) has recently been recognized as a distinct druggable molecular entity; however, there are limited data on its sensitivity to standard chemotherapy. In the near future, the combination of chemotherapy plus a KRAS(G12C)inhibitor might become the standard of care; however, the optimal chemotherapy backbone is unknown. methods: a multicentre retrospective analysis was conducted including KRASG12C-mutated mCRC patients treated with first-line FOLFIRI or FOLFOX +/ bevacizumab. Both unmatched and propensity-score-matched analysis (PSMA) were conducted, with PSMA controlling for: previous adjuvant chemotherapy, ECOG PS, use of bevacizumab in first line, timing of metastasis appearance, time from diagnosis to first-line start, number of metastatic sites, presence of mucinous component, gender, and age. Subgroup analyses were also performed to investigate subgroup treatment-effect interactions. KRAS(G12D)-mutated patients were analysed as control. results: one hundred and four patients treated with irinotecan-(N = 47) or oxaliplatin-based (N = 57) chemotherapy were included. In the unmatched population, objective response rate (ORR) and median (m) progression-free and overall survival (mPFS and mOS) were comparable between the treatment arms. however, a late (>12 months) PFS advantage was observed with irinotecan (HR 0.62, p = 0.02). In the PSMA-derived cohort, a significant improvement with irinotecan vs. oxaliplatin was observed for both PFS and OS: 12- and 24-month PFS rates of 55% vs. 31% and 40% vs. 0% (HR 0.40, p = 0.01) and mOS 37.9 vs. 21.7 months (HR 0.45, p = 0.045), respectively. According to the subgroup analysis, interaction effects between the presence of lung metastases and treatment groups were found in terms of PFS (p for interaction = 0.08) and OS (p for interaction = 0.03), with a higher benefit from irinotecan in patients without lung metastases. no difference between treatment groups was observed in the KRASG12D-mutated cohort (N = 153). Conclusions: First-line irinotecan-based regimens provided better survival results in KRAS(G12C)-mutated mCRC patients and should be preferred over oxaliplatin. These findings should also be considered when investigating chemotherapy plus targeted agent combinations

    Changes in renal function after nephroureterectomy for upper urinary tract carcinoma: analysis of a large multicenter cohort (Radical Nephroureterectomy Outcomes (RaNeO) Research Consortium)

    Get PDF
    Purpose To investigate prevalence and predictors of renal function variation in a multicenter cohort treated with radical nephroureterectomy (RNU) for upper tract urothelial carcinoma (UTUC). Methods Patients from 17 tertiary centers were included. Renal function variation was evaluated at postoperative day (POD)-1, 6 and 12 months. Timepoints differences were Delta 1 = POD-1 eGFR - baseline eGFR; Delta 2 = 6 months eGFR - POD-1 eGFR; Delta 3 = 12 months eGFR - 6 months eGFR. We defined POD-1 acute kidney injury (AKI) as an increase in serum creatinine by >= 0.3 mg/dl or a 1.5 1.9-fold from baseline. Additionally, a cutoff of 60 ml/min in eGFR was considered to define renal function decline at 6 and 12 months. Logistic regression (LR) and linear mixed (LM) models were used to evaluate the association between clinical factors and eGFR decline and their interaction with follow-up. Results A total of 576 were included, of these 409(71.0%) and 403(70.0%) had an eGFR < 60 ml/min at 6 and 12 months, respectively, and 239(41.5%) developed POD-1 AKI. In multivariable LR analysis, age (Odds Ratio, OR 1.05, p < 0.001), male gender (OR 0.44, p = 0.003), POD-1 AKI (OR 2.88, p < 0.001) and preoperative eGFR < 60 ml/min (OR 7.58, p < 0.001) were predictors of renal function decline at 6 months. Age (OR 1.06, p < 0.001), coronary artery disease (OR 2.68, p = 0.007), POD-1 AKI (OR 1.83, p = 0.02), and preoperative eGFR < 60 ml/min (OR 7.80, p < 0.001) were predictors of renal function decline at 12 months. In LM models, age (p = 0.019), hydronephrosis (p < 0.001), POD-1 AKI (p < 0.001) and pT-stage (p = 0.001) influenced renal function variation (ss 9.2 +/- 0.7, p < 0.001) during follow-up. Conclusion Age, preoperative eGFR and POD-1 AKI are independent predictors of 6 and 12 months renal function decline after RNU for UTUC

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the Jet Mass Distribution and Top Quark Mass in Hadronic Decays of Boosted Top Quarks in pp Collisions at root s=13 TeV

    Get PDF
    A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at root s = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lepton + jets channel of t (t) over bar events, where the lepton is an electron or muon. The products of the hadronic top quark decay t -> bW -> bq (q) over bar' are reconstructed as a single jet with transverse momentum larger than 400 GeV. The t (t) over bar cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6 +/- 2.5 GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of 3 relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.Peer reviewe

    Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at root s=13 TeV

    Get PDF
    A search for charged Higgs bosons (H-+/-) decaying into a top and a bottom quark in the all-jet final state is presented. The analysis uses LHC proton-proton collision data recorded with the CMS detector in 2016 at root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No significant excess is observed above the expected background. Model-independent upper limits at 95% confidence level are set on the product of the H-+/- production cross section and branching fraction in two scenarios. For production in association with a top quark, limits of 21.3 to 0.007 pb are obtained for H-+/- masses in the range of 0.2 to 3 TeV. Combining this with a search in leptonic final states results in improved limits of 9.25 to 0.005 pb. The complementary s-channel production of an H-+/- is investigated in the mass range of 0.8 to 3 TeV and the corresponding upper limits are 4.5 to 0.023 pb. These results are interpreted using different minimal supersymmetric extensions of the standard model.Peer reviewe

    Measurement of properties of B(s)(0)s -> mu(+)mu(-) decays and search for B-0 -> mu(+)mu(-) with the CMS experiment

    Get PDF
    Results are reported for the B 0s ! + branching fraction and effective lifetime and from a search for the decay B0 ! + . The analysis uses a data sample of proton-proton collisions accumulated by the CMS experiment in 2011, 2012, and 2016, with center-of-mass energies (integrated luminosities) of 7TeV (5 fb), 8TeV (20 fb), and 13TeV (36 fb). The branching fractions are determined by measuring event yields relative to B+ ! J= K+ decays (with J= ! + ), which results in the reduction of many of the systematic uncertainties. The decay B 0s ! + is observed with a significance of 5.6 standard deviations. The branching fraction is measured to be B (B 0s ! + ) = [2:9 0:7(exp) 0:2(frag)] 10, where the first uncertainty combines the experimental statistical and systematic contributions, and the second is due to the uncertainty in the ratio of the B 0s and the B+ fragmentation functions. No significant excess is observed for the decay B0 ! + , and an upper limit of B(B0 ! + ) <3:6 10 is obtained at 95% confidence level. The B 0s ! + effective lifetime is measured to be + = 1:70 +0:61 ps. These results are consistent with standard model predictions.Peer reviewe
    corecore