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Abstract 

Maternal immunization is successfully applied against some life-threatening infectious diseases as it 

can protect the mother and her offspring through the passive transfer of maternal antibodies. Here 

we sought to evaluate whether the concept of maternal immunization could also be applied to 

cancer immunoprevention. We have previously shown that antibodies induced by DNA vaccination 

against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from 

autochthonous mammary tumor development. We herein seek to evaluate whether a similar, 

maternal, immunization can confer anti-tumor protection to BALB-neuT offspring. Significantly 

extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers 

vaccinated against neu, as compared to controls. Maternally derived anti-neu IgG were successfully 

transferred from mothers to newborns and were responsible for the protective effect. Vaccinated 

mother offspring also developed active immunity against neu as revealed by the presence of T-cell-

mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the 

milk transfer of immune-complexes that were formed between the neu extracellular domain, shed 

from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings 

show that maternal immunization has the potential to hamper mammary cancer in genetically 

predestinated offspring and to develop into applications against lethal neonatal cancer diseases for 

which therapeutic options are currently unavailable. 
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Introduction 

Vaccination is the most powerful and versatile tool in preventive medicine and has recently 

extended its reach beyond infectious diseases to other life-threatening illnesses, such as cancer. 

Examples can be found in vaccines which have been designed to prevent infection-associated 

tumors 
1
 and in those targeting non-infection-related cancer diseases now in pre-clinical phases or in 

clinical trials 
2
. 

Maternal immunization against life-threatening disease inducing pathogens has been shown to be a 

viable approach against many childhood pathologies. The induction of high antibody levels 

following vaccination is fundamental to maternal immunization success. It has long been known 

that maternally derived IgG is the only antibody class that causes short-term passive immunity to be 

transferred from mother to fetus across the placenta and via the proximal small intestine during 

breastfeeding 
3, 4

. This passive protection slowly declines over the first year of life while the infant’s 

immune system become more mature 
5
.  

The vaccination of pregnant women against tetanus and the influenza virus has recently been 

proven to be safe and highly effective in providing newborn children with maternally transferred 

antibodies and thus protection from pathogens 
6-8

. Several antenatal vaccines are now available and 

recommended for pregnant women while others are in development 
9, 10

.
 
Maternal immunization 

against tumor-associated antigens instead is not a currently rated field and very few pre-clinical 

attempts have been made to prevent neonatal congenital tumors by maternal vaccination 
11, 12

.  

Most of our recent studies have focused on DNA vaccination against what we have defined as 

oncoantigens; tumor-associated antigens that have a causal role in the promotion of tumor 

progression 
13, 14

.
 
Membrane tyrosine kinase Her2, of the epidermal growth factor receptor family, is 

expressed by many human carcinomas in association with poor prognosis 
15

 and fulfills the 

definition of oncoantigen. We have demonstrated that vaccination with a plasmid that codes for the 
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extracellular and transmembrane (ECTM) domains of rat Her2 (neu) effectively inhibits mammary 

carcinogenesis 
16-18

 in female BALB/c mice heterozygous for the transforming form of the neu 

transgene under the transcriptional control of the mouse mammary tumor virus promoter (BALB-

neuT mice) 
19, 20

. Vaccine-elicited tumor inhibition in these mice is driven by anti-neu antibody 

generation 
16, 17

, while the T cell cytotoxic response is marginal as T cells that react against neu with 

high affinity are wiped out by central tolerance 
21, 22

.
 
 

The induction of high levels of antibodies following vaccination is also the mainstay of the success 

of maternal immunization strategy against infectious diseases. In the present study, we therefore 

seek to evaluate whether maternal immunization can also induce an anti-neu immune response able 

to hamper spontaneous tumor progression in BALB-neuT offspring. 
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Results  

Vaccine-induced anti-tumor antibodies are transferred from mothers to their offspring and 

delay tumor development 

Virgin BALB/c female mice were twice vaccinated via electroporation of ECTM plasmid (ECTM 

mothers) or its empty control vector (control mothers) and mated with a BALB-neuT male soon 

after their last immunization. No fertility impairment, reduction in litter number, newborn size or in 

the percentage of BALB-neuT mice was evident in the comparison between offspring born from 

and fed by control (control offspring), ECTM (ECTM offspring) and untreated mothers (data not 

shown). The presence of anti-neu antibodies in ECTM mother sera and milk was confirmed two 

weeks after the last immunization and three weeks after delivery, respectively (Fig. 1A). As 

expected, passively transferred anti-neu antibodies were found in the sera of ECTM offspring, but 

not in the sera of control offspring (Fig. 1A, B). The highest anti-neu antibody amount was found at 

1 week of age, probably due to colostrum ingestion, and remained high until the 5
th

 weeks. The 

anti-neu antibody titer dropped from week 6 probably because of offspring weaning at 4 weeks 

(Fig. 1B). 

We have previously shown that the anti-neu antibodies induced by ECTM vaccination of BALB-

neuT females halt autochthonous mammary carcinogenesis 
16, 17, 23

. Having found specific anti-neu 

antibodies in ECTM offspring we investigated whether these antibodies were able to inhibit 

mammary carcinogenesis in female BALB-neuT pups (neu
+
 offspring). Indeed, neu

+ 
ECTM 

offspring showed significantly extended tumor-free survival over neu
+ 

control offspring (Fig. 1C). 

At week 23 about 35% of neu
+ 

ECTM offspring were free from palpable lesions whereas all neu
+ 

control offspring displayed at least one palpable tumor. The passage of anti-tumor immunity from 

mother to offspring was further confirmed by the ability of non-transgenic pups (neu
-
 offspring) 

from ECTM mothers to hamper the growth of a transplantable tumor induced by a neu
+
 cancer cell 

line challenge (TUBO cells) 
24

. While 100% neu
-
 control offspring developed TUBO tumors, 2 of 
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22 neu
-
 ECTM offspring did not develop a palpable tumor (Table 1). Moreover, the time required 

for the TUBO cells to give rise to 2, 4, 6 or 8 mm mean diameter tumors was significantly longer in 

neu
-
 ECTM offspring than in neu

-
 control offspring. The 10 mm mean diameter threshold (survival 

time) was reached in an average time of 34.8 ± 1.4 days in neu
-
 ECTM offspring and in 26.8 ± 1.3 

days in neu
-
 control offspring (Table 1).  

To determine whether this results obtained with antenatal vaccination can be generalized, BALB/c 

females were vaccinated against Angiomotin p80 (Amot), an oncoantigen expressed on tumor 

vasculature 
25

, using  a plasmid coding for this protein (pAmot). Vaccinated females were then 

mated with a BALB-neuT male and neu
+
 offspring were evaluated for mammary tumor 

development. We have previously shown that vaccination induced anti-Amot antibodies impair 

tumor vascularization 
26

 and significantly delay autochthonous tumor progression 
27

 in female 

BALB-neuT mice. Post-vaccination anti-Amot antibody induction was confirmed in pAmot 

vaccinated mother sera and milk and in the sera of their offspring (pAmot offspring) (Fig. 2A). 

Mammary carcinoma onset in neu
+
 female offspring born from and fed by pAmot vaccinated 

mothers was significantly delayed with respect to offspring born from and fed by control vaccinated 

mothers (Fig. 2B).  

Finally, to demonstrate that observed anti-tumor protection was due to the choice of an oncoantigen 

as the DNA vaccination target, we vaccinated BALB/c females with a plasmid coding for 

Escherichia coli β-galactosidase (LacZ plasmid), a tumor unrelated protein. Vaccinated females 

were soon mated with a BALB-neuT male and carcinogenesis progression was evaluated in neu
+
 

female offspring. While anti- β-galactosidase antibodies were found in the sera of both LacZ 

vaccinated mothers and their offspring, no statistical difference in tumor incidence was observed 

between neu
+
 female offspring born from and fed by LacZ vaccinated mothers and those born from 

and fed by control mothers (Fig. 2C, D).  
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The presence of antibodies and functional FcRI/III is required to delay mammary 

carcinogenesis in ECTM offspring. 

To confirm the role of antibodies in mammary carcinogenesis delay, BALB/c female mice knock-

out (KO) for the µIg chain (BKO mice) 
28

, and thus unable to produce antibodies, were 

electroporated with ECTM or the empty control vector. Females were mated with a BALB-

neuT/BKO male a few days after the last immunization. No statistical difference in tumor incidence 

was observed when autochthonous mammary tumor growth was evaluated in BKO neu
+
 ECTM and 

control offspring (Fig. 3A), thus proving that maternally derived antibodies are necessary for 

effective anti-tumor protection.  

IgG2a was the most abundant IgG subclass in the milk and sera of ECTM mothers and in the sera of 

their pups, whereas IgG3 was the least common (Fig. 1B). This is in line with our previous findings 

which demonstrate that ECTM vaccination elicits the activation of T helper cells producing 

interferon (IFN) -γ, the primary switch factor for IgG2a 
17

. IgG2a activate the complement and 

interact very efficiently with the Fc receptors on various effector cells 
29

.  

To further elucidate how these passively transferred antibodies induce tumor delay, BALB/c mice 

KO for the Fc-gamma I/III receptors (FcγRI/III) (FcKO mice) 
30

 were immunized with ECTM or 

its empty control vector and mated with a BALB-neuT/FcKO male. FcKO neu
+
 ECTM offspring 

did not display any significant tumor onset delay over FcKO neu
+
 control offspring (Fig. 3B), 

suggesting that antibody-dependent, cell-mediated cytotoxicity is one of the mechanisms behind 

vaccine-induced IgG's triggering of anti-tumor protection.  

neu extracellular domain (EC)-IgG immune-complexes are present in ECTM mother's milk 

and induce an active immune response in offspring 
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Transfer of antigen-IgG immune complexes with breastfeeding is an important mechanism of active 

immunization in the offspring. We thus set up an ELISA assay to detect EC-IgG immune-

complexes, showing their presence in ECTM mothers' sera and milk (Fig. 4A). We then evaluated 

the presence of anti-neu IgM in the offspring sera. As shown in Fig. 4B, sera from ECTM offspring 

had a significant higher level of IgM over control. Moreover, exploiting a B cell ELISPOT analysis, 

a significantly higher amount of neu-specific IgM
+
 memory B cells was found in the spleen of 5 

week-old ECTM offspring as compared to age-matched control offspring (Fig. 4C).  

A further confirmation of an active immune response against neu in ECTM offspring came from the 

evaluation of the T cell response. As expected, ECTM mothers displayed increased in vivo 

cytotoxic activity against spleen cells, pulsed with p63-71, over control mothers (Fig. 5A). In a 

similar assay, no specific cytotoxic response was found against p63-71 in control offspring, whereas 

it was evident in the
 
ECTM offspring (Fig. 5A). Surprisingly, no significant differences in lysis 

percentage were found in neu
-
 and neu

+ 
ECTM offspring, while a lower, if any, cytotoxic response 

was expected in neu
+
 ECTM offspring. We then checked the TCR repertoire used to react against 

p63-71 in these mice in order to shed light onto the origin of the cytotoxic activity found in the 

pups. Popliteal, inguinal and mesenteric LNs were collected from ECTM mothers 5 weeks post 

delivery and from their 5-week old offspring and the expansion of specific p63-71 TCR repertoires 

of CD8
+
 T cells was evaluated. We have previously identified a public TCR rearrangement, the 

Vβ9-Jβ1.2 recombination, elicited by ECTM vaccination in BALB/c mice that recognizes the p63-

71 peptide with high avidity and is wiped-out by central tolerance in BALB-neuT mice 
21

. The 

expansion of this repertoire was found in all ECTM mothers as well as in 3 out of 5 neu
-
 ECTM 

offspring while, as expected, none of the neu
+
 ECTM offspring presented this TCR rearrangement 

(Fig. 5B). We then evaluated the expansion of the Vβ6-Jβ2.7 rearrangement. This is a low avidity 

CD8
+
 T cell clone that is specific for p63-71 and is induced by ECTM vaccination, but normally 

controlled by peripheral tolerance mechanisms such as T regulatory cell (Treg) expansion in adult 
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BALB-neuT mice 
22

. Vβ6-Jβ2.7 rearrangement expansion was found in 5 out of 7 neu
+ 

ECTM 

offspring and in none of the neu
+ 

control offspring (Fig. 5B). CD8
+
 T cell activation in ECTM 

offspring was also confirmed in vitro with an IFN-γ-based ELISPOT assay after spleen cell 

stimulation using the p63-71 peptide (Fig. 5C). Again, no statistically significant difference 

between neu
-
 and neu

+ 
ECTM offspring was found.  
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Discussion 

The data reported in this paper show that maternal DNA immunization against two oncoantigens, 

neu and Amot, impairs the onset of mammary tumors in cancer-prone neu
+
 offspring. After DNA 

vaccination, high levels of IgG against the target oncoantigen can be detected both in vaccinated 

mothers’ sera and milk, although at lower levels in the milk. We observed that vaccine-induced IgG 

were successfully transferred to the offspring, with the highest amount of specific IgG found in one 

week-old pup sera. A significant decrease in antibody titer was detected from the second to the 5
th

 

week of age, after which it dropped out. The passive transfer of maternal antibodies, in humans and 

other mammals, occurs via placental and milk transfer of IgG through the neonatal Fc receptor 

(FcRn) and via polymeric IgA milk transfer. In humans, FcRn is expressed by syncytiotrophoblast 

where it antenatally transports IgG from maternal circulation to the fetal capillaries of the placental 

villi 
4
. By contrast, in rodents the FcRn functions most efficiently in the neonatal period when it 

transports maternally derived IgG in ingested milk across the epithelial-cell layer of the proximal 

intestine 
4
.  

Besides being the main source of passive immunity in very early life, breastfeeding is also an 

important route for active immunization thanks to the efficient transfer of antigen-IgG immune 

complexes, contained in the milk, to the breastfed pups via the FcRn and across the proximal 

intestine 
31

. We thus hypothesized that vaccine-transfected muscle cells might be the source of the 

neu protein, otherwise not present in a wild type mouse. As happens normally, EC may be shed 

from transfected muscle cell membranes 
32

, form complexes with vaccine-induced anti-neu 

antibodies, accumulate in the milk and be passed to the pups, triggering an active immune response. 

To confirm this hypothesis, an ELISA assay was set up to detect EC-IgG immune-complexes, that 

were found in ECTM mothers' sera and milk.  

We then sought to evaluate whether these EC-IgG immune-complexes were able to induce an active 

immune response in the pups. An initial indication of this came from a significant higher level of 
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IgM against neu and of neu-specific IgM
+
 memory B cells in ECTM offspring over control. 

However, the proof of active immunization in breastfed pups came from the observation of an in 

vivo cytotoxic response against the neu p63-71 peptide in ECTM offspring. It is known that live 

activated leukocytes, including CD8
+
 T cells, are present in mother's milk, that they can be 

transferred during breastfeeding and that they can enter pups' intestinal tract tissue and mesenteric 

LNs in some species 
31

. It can be hypothesized, in the case of syngeneic strains, that these passively 

transferred cells may survive in the pups and be found in mesenteric LNs 5 weeks after birth, when 

the in vivo cytotoxicity assay was performed. Nevertheless, this possibility was ruled out by the Vβ-

Jβ spectratype analysis results. We observed the expansion of CD8
+
 T cells bearing the Vβ9-Jβ1.2 

rearrangement in all ECTM mothers but in none of their neu
+
 offspring; this Vβ-Jβ rearrangement is 

normally used as public in ECTM vaccinated BALB/c mice 
21

. On the other hand, in 71% of neu
+ 

ECTM offspring there was expansion of low avidity CD8
+
 T cells bearing the Vβ6-Jβ2.7 TCR 

rearrangement that is typical of ECTM vaccinated BALB-neuT, but not BALB/c, mice 
22

. Indeed, 

we have recently shown how a temporary Treg depletion and ECTM vaccination in BALB-neuT 

mice was able to induce the expansion of latent pools of low-avidity CD8
+
 T cells bearing TCR 

repertoires that react with p63-71 
22

. The Vβ6-Jβ2.7 rearrangement, the same expanded in neu
+
 

ECTM offspring in the present study, was among them. Preliminary data show a decrease in spleen-

derived Treg percentage in neu
+
 ECTM offspring as compared to neu

+
 control offspring at the 5

th
 

week of age (not shown). This may explain the presence of reactive, although low avidity, CD8
+
 T 

cell clones in neu
+
 ECTM offspring.  

In conclusion, all together these findings are proof of concept of the efficacy of maternal 

immunization against an oncoantigen. We herein suggest that the concept of maternal 

immunization, being a potent weapon against pathogen-induced diseases in newborns, can be 

extended and used to delay cancer development in genetically predestinated offspring. The potential 

applications of this groundbreaking approach to neonatal cancer diseases such as neuroblastoma, 
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rhabdomyosarcoma, Wilms tumor and retinoblastoma may have a substantial impact on clinical 

practice. 
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Materials and methods 

Mice. BKO mice 
28

, and FcKO mice 
30

 were crossed with BALB-neuT mice to generate BALB-

neuT/BKO and BALB-neuT/FcKO mice, respectively. All mice were bred under specific 

pathogen-free conditions at the Molecular Biotechnology Center (Torino, Italy) and treated in 

conformity with European Guidelines and policies, as approved by the Ethical Committee of the 

University of Torino. 

Cells. TUBO cells, an in vitro established neu
+
 cell line derived from a lobular carcinoma arising in 

a BALB-neuT female mice 
24

, were cultured in DMEM supplemented with GlutaMAX™, D-

glucose, HEPES buffer (Gibco), and 20% FBS (Sigma-Aldrich).  

Immunization and tumor growth. The pCMV3.1 control, the ECTM 
16

 and pAmot 
26

 plasmids 

were generated as previously described. The pAAV-MCS (control plasmid) and the pAAV-MCS 

plasmid coding for Escherichia coli β-galactosidase (LacZ plasmid), were from the AAV Helper-

Free System (Agilent Technologies Inc.). 50 μg of plasmids diluted in saline were injected into the 

quadriceps muscle of anesthetized mice. Immediately after injection, two 25-ms trans-cutaneous 

low voltage electric pulses (amplitude 150 V; interval 300 ms) were administered at the injection 

site via a multiple needle electrode connected to a Cliniporator™ (IGEA Srl). Female mice were 

immunized at 10 and 12 weeks of age and mated at week 13. All pups were fed by their own mother 

and weaned at 4 weeks of age. BALB-neuT female offspring mammary glands were inspected 

weekly for tumor appearance from the 12
th

 week of age. 5 week-old neu
-
 offspring were challenged 

subcutaneously in the inguinal region with 1x10
5 

TUBO cells. Tumor masses were measured as 

previously described 
33

. 

Assessment of anti-neu and anti-Amot antibodies. Sera from mothers were collected 2 weeks 

after the last vaccination. Pups’ sera were collected from 1 to 8 weeks after birth. Mothers were 

separated from their litters 3 weeks after delivery for milk collection and fed with hydrated food for 
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24 hours. 2 IU of oxytocin (PitocinaIniet; Farmaceutici Gellini Srl) were injected twice i.p. at an 

interval of 5 minutes between each administration. Milk was manually expressed from anesthetized 

mice, collected and mixed with a protease inhibitor cocktail (Sigma-Aldrich). Defatted milk was 

obtained after an initial room temperature centrifugation for 10 minutes, at 2.000 rpm and two 

subsequent 4°C centrifugations at 12.000 rpm for 90 minutes. Sera and milk samples were tested by 

ELISA. 96 well/plates (Costar®, Sigma-Aldrich) were coated with 100 ng/well of recombinant EC 

neu (Genway) or recombinant human-Amot (Origene) protein, overnight at 4°C. Coated plates were 

then blocked with 10% NCBS (Newborn Calf Serum; Sigma-Aldrich) in PBS (Invitrogen)-Tween 

(Sigma-Aldrich) 0.05% buffer for 2 hours at 37°C. Plates were incubated with samples diluted 

1:100 in 1% blocking buffer for 1 hour at 37°C. Plates were washed 3 times with a PBS-Tween 

buffer. The HRP-conjugated anti-mouse IgG antibody (Sigma-Aldrich) (1:2000 dilution in blocking 

buffer) was incubated for 1 hour at 37°C. Plates were washed 6 times and chromogenic 3,3′,5,5′-

Tetramethylbenzidine substrate was added (TMB; Sigma-Aldrich). The reaction was stopped by the 

addition of HCl 2N and optical density was measured at 450 nm using a microplate reader (680XR, 

BioRad). IgG isotype titration was performed using rat biotin-conjugated anti-mouse IgG1, IgG2a, 

IgG2b, IgG3 and IgM (BD Pharmingen) as secondary antibodies.  Plates were then incubated for 30 

minutes at room temperature with streptavidin-HRP (R&D Systems) diluted 1:200 in a PBS-Tween 

buffer and reactions were carried forward as described above. 

Memory B cell ELISPOT. Splenocytes (SPC) from 5 week-old control and ECTM offspring were 

collected and stimulated with a mixture of R848 (1 µg/ml, Mabtech) and rmIL-2 (10 ng/ml, 

Mabtech). 72 hours later, B cells were isolated by positive immune selection after SPC incubation 

with a biotin-antibody cocktail against CD43 (BD Pharmingen) and CD11c (eBioscience) for 20 

minutes at 4°C, followed by an incubation for 10 minutes at 4°C with Anti-Biotin MicroBeads 

(Miltenyi Biotec). 1x10
5
 B cells were plated in triplicate on PVDF ELISPOT plates (Mabtech) pre-

coated with 20 µg/ml of recombinant EC neu protein. Plates were incubated for 24 hours at 37°C 
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and developed according to manufacturer’s instructions (ELISpotPLUS, Mabtech). Specific spots 

were enumerated using the Transtec 1300 ELISPOT Reader (AMI Bioline). The number of specific 

spots was calculated by subtracting the number of spontaneously produced spots and expressed as 

spot-forming unit (SFU)/10
6
 cells. 

Immunoblotting. A total cell lysate from mouse cardiomyocytes which express β-galactosidase 

protein after recombinant Adeno-associated virus 2 viral particles (kindly provided by Prof. Emilia 

Turco, Molecular Biotechnology Center, University of Torino) infection, was separated by SDS-

PAGE. Sera from vaccinated mothers and from their 3-week-old offspring were collected, pooled, 

diluted 1:50 in TTBS and incubated overnight at 4°C on the membrane, as primary antibody. Goat 

anti-mouse HRP secondary antibody (Sigma-Aldrich) was used for detection. Policlonal rabbit anti-

β-galactosidase (Thermo Scientific) and anti-HSP90 antibody (Santa Cruz) were used as positive 

and loading control, respectively and detected by goat anti-rabbit HRP (Sigma-Aldrich). Proteins 

were detected by enhanced chemiluminescence (ECL
®

, Amersham Biosciences).  

In vivo cytotoxicity assay. 10
7
 naive SPC/ml were labeled with two different concentrations (0.5 

µM or 5.0 µM) of the fluorescent dye CFSE (Molecular Probes). 5 µM labeled-SPC were also 

pulsed with p63-71 (TYVPANASL; InBios Srl) for 90 minutes at 37°C. The two SPC populations 

were mixed in equal amounts and injected into the tail vein of mothers vaccinated with control or 

ECTM mothers two weeks after the last vaccination and into 5 week-old control or ECTM 

offspring. Forty-eight hours later, single-cell suspensions from the spleen of each mouse were 

processed to evaluate the presence of CFSE
high

- and CFSE
low

-labeled SPC on a CyAn ADP Flow 

Cytometer (DakoCytomation). The low peak percentage was normalized to control untreated low 

peaks and the specific cytolytic activity was calculated as: 100 – [(CFSE
low

 untreated cells / 

CFSE
low

 experimental cells) x CFSE
high

 experimental cells] x 100 / CFSE
high

 untreated cells. 
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TCR repertoire analysis. Popliteal, inguinal and mesenteric lymph nodes (LNs) were collected 

from 5-week-old control and ECTM offspring and cultured for 3 days with or without 15 µM of 

p63-71. Total RNA was isolated from the recovered LNs cells using the RNeasy Mini Kit (Qiagen) 

according to manufacturer's instructions. cDNA was synthesized using an oligo-dT primer (dT15) 

(Invitrogen). cDNA was subjected to PCR amplification using a common Constant (C)  primer 

(CACTGATGTTCTGTGTGACA) in combination with the following V primers: 6, 

CTCTCACTGTGACATCTGCCC; 9, TCTCTCTACATTGGCTCTGCAGGC. Using 2 l of PCR 

product as a template, run-off reactions were performed with the following internal fluorescent J: 

1.2, AAAGCCTGGTCCCTGAGCCGAAG; 2.7, CTAAAACCGTGAGCCTGGTGC. Run-off 

products were denatured in formamide and analyzed on an Applied Biosystem 3100 Prism using 

Gene-scan 2.0 software (Applied Biosystem). Data were reported as the rate of stimulation index 

(RSI): normalized peak area from stimulated cells/normalized peak area of non-stimulated cells. T 

cells carrying a TCR rearrangement were considered to be expanded in a vaccination-driven manner 

when RSI was >2 
21

. 

EC-IgG immune complex detection. 96 well/plates (Costar®, Sigma-Aldrich) were coated with 

200 ng/well of the anti-CD340 monoclonal antibody (Sino Biological Inc.), saturated with 5% 

NCBS in PBS-Tween 0.05 % for 1 hour at 37°C and, after several washes, the plates were 

incubated for 2 hours at 37°C with a 1:50 dilution of both milk and serum followed by HRP-

conjugated anti-mouse IgG antibody. The following reactions were carried forward as described for 

the detection of anti-neu antibodies. 

IFN-γ ELISPOT assay. 1x10
6 

SPC from 5-week-old control and ECTM offspring were plated in 

triplicate into nitrocellulose 96-well HTS IP plates (Millipore, Bedford, MA) which had been pre-

coated with 5 μg/ml of rat anti-mouse IFN-γ antibody (clone R4-6A2, BD Biosciences). SPC were 

stimulated for 48 hours at 37°C with 15 μg/ml of p63-71. Plates were developed according to 
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manufacturer’s instructions (BD
TM

 ELISPOT Set, BD Biosciences). Spots were enumerated as 

described above. 

Statistical analysis. Statistical differences were evaluated using the GraphPad software 5.0 

(GraphPad Inc.). The Mantel-Haenszel Log-rank test was used to analyze differences in the  

incidence of tumors, while the Student’s t test was used for the evaluation of all other statistical 

differences. 
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Figure Legends 

 

Figure 1. DNA vaccine-induced anti-neu antibodies are successfully transferred from mothers to 

their pups and induce delayed mammary carcinoma onset in neu
+
 offspring. (A) Detection of 

vaccination-induced anti-neu antibodies in the sera and milk of control (white bars) and ECTM 

(black bars) vaccinated mothers and in the sera of their 4 week-old offspring. **P = 0.004; ***P ≤ 

0.0003, Student’s t test. Data are representative of two independent experiments and represented as 

mean ± SEM. (B) Characterization of IgG subclasses of anti-neu antibodies in the sera and in the 

milk of ECTM mothers and in the sera of their 3-4 week-old offspring. (C) Detection of anti-neu 

IgG in control (white bars) and ECTM (black bars) offspring’s sera collected from the 1
st
 to the 8

th
 

week after birth. (D) Appearance of the first palpable mammary tumor in control (dotted black line, 

n = 12) and ECTM (continuous black line, n = 26) neu
+
 offspring. Data are representative of four 

independent experiments. ***P < 0.0001, Mantel-Haenszel Log-rank test. 

 

Figure 2. Maternal immunization against an oncoantigen, but not an unrelated antigen, delayed 

mammary carcinoma onset in neu
+
 offspring. (A) Detection of vaccination-induced anti-Amot 

antibodies in sera and milk of control (white) and ECTM (black) mothers and in the sera of their 4 

week-old offspring. ***P ≤ 0.0003, Student’s t test. (B) Tumor incidence in control (dotted black 

line, n = 11) and pAmot (continuous black line, n = 18) neu
+
 offspring. Data are representative of 

three independent experiments. **P = 0.001, Mantel-Haenszel Log-rank test.  (C) Western blot 

analysis of β-galactosidase protein. Sera from control and LacZ mothers and their offspring were 

used as primary antibodies, recombinant β-galactosidase as positive control and HSP90 protein as 

loading control. (D) tumor incidence in control (dotted black line, n = 10) and LacZ (black line, n = 

8) neu
+
 offspring. 
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Figure 3. The presence of anti-neu antibodies and functional FcγRI/III are required to delay 

mammary carcinogenesis in neu
+
 offspring. Tumor incidence of mammary carcinomas in 

neu
+
 offspring of BKO (A) and FcKO (B) control (dotted black lines; n = 7 BKO, n = 7 FcγKO) 

and ECTM (black lines; n = 6 BKO, n = 5 FcγKO) mothers. Data are representative of two 

independent experiments. 

 

Figure 4. The passive transfer of maternal immunity induces an active humoral immune response in 

offspring. (A) Detection of EC-IgG immune-complexes in mothers’ milk and sera. (B) Detection of 

anti-neu IgM in mothers’ milk and sera and in the sera of their 3-4 week-old offspring. (C) Presence 

of neu-specific IgM
+
 memory B cells in 5 week-old neu

-
 and neu

+
 offspring. Neu-specific IgM 

secreting cells are expressed as SFU/1x10
6
 B cells. In all panels, white bars refer to control, black 

bars to ECTM. Data show the mean ± SEM of values obtained from two to three independent 

experiments. *P = 0.01; **P = 0.004; ***P ≤ 0.0007, Student’s t test. 

 

Figure 5. The passive transfer of maternal immunity induces an active cytotoxic immune response 

and the expansion of a distinct TCR repertoire in offspring. (A) In vivo cytotoxic response against 

p63-71 in control (white dots) or ECTM (black dots) mothers and in their neu
-
 and neu

+
 5 week-old 

offspring. (B) TCR repertoires in ECTM vaccinated mothers and in their neu
-
 and neu

+
 offspring. 

Immunoscope analysis was performed on cDNA pools obtained from LNs of ECTM mothers (n = 

3) and their neu
+
 (n = 7) and neu

-
 (n = 5) 5 week-old offspring. LNs cells were re-stimulated in vitro 

with the p63-71. Vβ9-Jβ1.2 and Vβ6-Jβ2.7 rearrangement frequencies are shown. Data are 

representative of two independent experiments. (C) T-cell response against p63-71 was quantified 

in vitro with an IFN-γ-based ELISPOT assay. IFN-γ-producing cells from control (white bars) and 

ECTM (black bars) neu
-
 and neu

+
 offspring are expressed as SFU/1x10

6
 SPC. *P = 0.01; **P = 

0.005; ***P = 0.0008, Student’s t test. Graphs display mean ± SEM and are representative of two 

independent experiments. 
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Table 1. Maternal immunization against neu hampers the growth of a transplantable mammary tumor 

 
Tumor takes/challenged 

mice 

 
Latency time (days)

a
 

 Survival time 

(days)
a
 

  2 mm
b
 4 mm 6 mm 8 mm  10 mm 

Control offspring 22/22 (100%)
c
  12.1 ± 0.6 15.5 ± 0.6 18.9 ± 1 22.5 ± 1.2  26.8 ± 1.3 

ECTM offspring 20/22 (91%)  14.5 ± 0.8
*
 19.8 ± 0.7

***
 24 ± 0.6

***
 28.6 ± 1.1

***
  34.8 ± 1.4

***
 

 

a 
The time taken by TUBO cells to give rise to tumors with a mean diameter of 2, 4, 6 and 8 (latency times) or 10 (survival time) mm. Data are 

representative of three independent experiments and are expressed as mean
 
± SEM 

b
 mean tumor diameter  

c
 percentage of survival in parentheses 

*
 P = 0.02, 

***
 P ≤ 0.0006 as compared to control offspring, Student’s t test 
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