144 research outputs found

    Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury

    Get PDF
    Intrauterine growth restriction (IUGR) is a complex global healthcare issue. Concerted research and clinical efforts have improved our knowledge of the neurodevelopmental sequelae of IUGR which has raised the profile of this complex problem. Nevertheless, there is still a lack of therapies to prevent the substantial rates of fetal demise or the constellation of permanent neurological deficits that arise from IUGR. The purpose of this article is to highlight the clinical and translational gaps in our knowledge that hamper our collective efforts to improve the neurological sequelae of IUGR. Also, we draw attention to cutting-edge tools and techniques that can provide novel insights into this disorder, and technologies that offer the potential for better drug design and delivery. We cover topics including: how we can improve our use of crib-side monitoring options, what we still need to know about inflammation in IUGR, the necessity for more human post-mortem studies, lessons from improved integrated histology-imaging analyses regarding the cell-specific nature of magnetic resonance imaging (MRI) signals, options to improve risk stratification with genomic analysis, and treatments mediated by nanoparticle delivery which are designed to modify specific cell functions

    Update on the pharmacology of calcitonin/CGRP family of peptides:IUPHAR Review 25

    Get PDF
    The calcitonin/calcitonin gene-related peptide (CGRP) family of peptides includes calcitonin, α and β CGRP, amylin, adrenomedullin (AM) and adrenomedullin 2/intermedin (AM2/IMD). Their receptors consist of one of two G protein-coupled receptors (GPCRs), the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CLR). Further diversity arises from heterodimerisation of these GPCRs with one of three receptor activity-modifying proteins (RAMPs). This gives the CGRP receptor (CLR/RAMP1), the AM1 and AM2 receptors (CLR/RAMP2 or RAMP3) and the AMY1, AMY2 and AMY3 receptors (CTR/RAMPs1-3 complexes, respectively). Apart from the CGRP receptor, there are only peptide antagonists widely available for these receptors and these have limited selectivity, thus defining the function of each receptor in vivo remains challenging. Further challenges arise from the probable co-expression of CTR with the CTR/RAMP complexes and species-dependent splice variants of the CTR (CT(a) and CT(b)). Furthermore, the AMY1(a) receptor is activated equally well by both amylin and CGRP and the preferred receptor for AM2/IMD has been unclear. However, there are clear therapeutic rationales for developing agents against the various receptors for these peptides. For example many agents targeting the CGRP system are in clinical trials and pramlintide, an amylin analogue, is an approved therapy for insulin-requiring diabetes. This review provides an update on the pharmacology of the calcitonin family of peptides by members of the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology and colleagues

    Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic

    Get PDF
    Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual\u27s risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig\u27s potential to enhance clinical therapeutic innovation to improve human health. (Figure presented.)

    Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR

    Full text link

    Ureaplasma species multiple banded antigen (MBA) variation is associated with the severity of chorioamnionitis in late preterm placentas [Conference Abstract]

    Get PDF
    Background: Intra-amniotic infection accounts for 30% of all preterm births (PTB), with the human Ureaplasma species being the most frequently identified microorganism from the placentas of women who deliver preterm. The highest prevalence of PTB occurs late preterm (32-36 weeks) but no studies have investigated the role of infectious aetiologies associated with late preterm birth. Method: Placentas from women with late PTB were dissected aseptically and samples of chorioamnion tissue and membrane swabs were collected. These were tested for Ureaplasma spp. and aerobic/anaerobic bacteria by culture and real-time PCR. Western blot was used to assess MBA variation in ureaplasma clinical isolates. The presence of microorganisms was correlated with histological chorioamnionitis. Results: Ureaplasma spp. were isolated from 33/466 (7%) of placentas by culture or PCR. The presence of ureaplasmas, but not other microorganisms, was associated with histological chorioamnionitis (21/33 ureaplasma-positive vs. 8/42 other bacteria; p= 0.001). Ureaplasma clinical isolates demonstrating no MBA variation were associated with histological chorioamnionitis. By contrast, ureaplasmas displaying MBA variation were isolated from placentas with no significant histological chorioamnionitis (p= 0.001). Conclusion: Ureaplasma spp. within placentas delivered late preterm (7%) is associated with histological chorioamnionitis (p = 0.001). Decreased inflammation within chorioamnion was observed when the clinical ureaplasma isolates demonstrated variation of their surface-exposed lipoproteins (MBA). This variation may be a mechanism by which ureaplasmas modulate and evade the host immune response. So whilst ureaplasmas are present intra-amniotically they are not suspected because of the normal macroscopic appearance of the placentas and the amniotic fluid

    Oligodendrocytes: Cells of origin for white matter injury in the developing brain

    No full text
    A prominent pattern of brain injury in preterm born infants involves damage to white matter with impaired oligodendrocyte maturation. This results in diffuse deficits in myelination that are associated with later development of cerebral palsy. While numerous experimental animal models of perinatal white matter injury have been developed, they show a spectrum of effects. This review proposes that adopting a more standard approach to defining white matter injury is important for validating experimental findings against the bona fide human condition. This chapter will describe the pathology of perinatal white matter injury and a general methodological approach for assessing white matter injury experimentally

    HGF regulates the development of cortical pyramidal dendrites

    Get PDF
    Although hepatocyte growth factor (HGF) and its receptor tyrosine kinase MET are widely expressed in the developing and mature central nervous system, little is known about the role of MET signaling in the brain. We have used particle-mediated gene transfer in cortical organotypic slice cultures established from early postnatal mice to study the effects of HGF on the development of dendritic arbors of pyramidal neurons. Compared with untreated control cultures, exogenous HGF promoted a highly significant increase in dendritic growth and branching of layer 2 pyramidal neurons, whereas inactivation of endogenous HGF with function-blocking, anti-HGF antibody caused a marked reduction in size and complexity of the dendritic arbors of these neurons. Furthermore, pyramidal neurons transfected with an MET dominant-negative mutant receptor likewise had much smaller and less complex dendritic arbors than did control transfected neurons. Our results indicate that HGF plays a role in regulating dendritic morphology in the developing cerebral cortex
    corecore