80 research outputs found

    Juvenile myoclonic epilepsy presenting as a new daily persistent-like headache

    Get PDF
    New daily persistent headache (NDPH) is a recognized subtype of chronic daily headache with a unique presentation of a daily headache from onset typically in individuals with minimal or no prior headache history. Various secondary mimics of NDPH have now been documented but at present there has been no association made between primary epilepsy syndromes and new daily persistent-like headaches. A case patient is presented who developed a daily continuous headache from onset who 3 months after headache initiation had her first generalized tonic-clonic seizure. Further investigation into her history and her specific EEG pattern suggested a diagnosis of juvenile myoclonic epilepsy (JME). Her NDPH and seizures ceased with epilepsy treatment. Clinically relevant was that the headache was the primary persistent clinical symptom of her JME before the onset of generalized tonic-clonic seizures. The current case report adds another possible secondary cause of new daily persistent-like headaches to the medical literature and suggests another association between primary epilepsy syndromes and distinct headache syndromes

    Anticipation in a family with primary familial brain calcification caused by an SLC20A2 variant

    Get PDF
    Aim of the study To describe a family with primary familial brain calcification (PFBC) due to SLC20A2 variant showing possible genetic anticipation. Materials and methods We conducted historical, genealogical, clinical, and radiologic studies of a family with PFBC. Clinical evaluations including neurological examination and head computed tomography (CT) scans of a proband and her father were performed. They provided additional information regarding other family members. To identify a causative gene variant, we performed whole-exome sequencing for the proband followed by segregation analysis in other affected members using direct sequencing. Results In this family, nine affected members were identified over four generations. The proband suffered from chronic daily headache including thunderclap headache. We identified an SLC20A2 (c.509delT, p.(Leu170*)) variant in three affected members over three generations. Interestingly, the age of onset became younger as the disease passed through successive generations, suggestive of genetic anticipation. Conclusions and clinical implications For clinical purpose, it is important to consider thunderclap headache and genetic anticipation in PFBC caused by SLC20A2 variants. Further investigation is required to validate our observation

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant

    Ecomorph or Endangered Coral? DNA and Microstructure Reveal Hawaiian Species Complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli

    Get PDF
    M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity

    Expression of Conjoined Genes: Another Mechanism for Gene Regulation in Eukaryotes

    Get PDF
    From the ENCODE project, it is realized that almost every base of the entire human genome is transcribed. One class of transcripts resulting from this arises from the conjoined gene, which is formed by combining the exons of two or more distinct (parent) genes lying on the same strand of a chromosome. Only a very limited number of such genes are known, and the definition and terminologies used for them are highly variable in the public databases. In this work, we have computationally identified and manually curated 751 conjoined genes (CGs) in the human genome that are supported by at least one mRNA or EST sequence available in the NCBI database. 353 representative CGs, of which 291 (82%) could be confirmed, were subjected to experimental validation using RT-PCR and sequencing methods. We speculate that these genes are arising out of novel functional requirements and are not merely artifacts of transcription, since more than 70% of them are conserved in other vertebrate genomes. The unique splicing patterns exhibited by CGs reveal their possible roles in protein evolution or gene regulation. Novel CGs, for which no transcript is available, could be identified in 80% of randomly selected potential CG forming regions, indicating that their formation is a routine process. Formation of CGs is not only limited to human, as we have also identified 270 CGs in mouse and 227 in drosophila using our approach. Additionally, we propose a novel mechanism for the formation of CGs. Finally, we developed a database, ConjoinG, which contains detailed information about all the CGs (800 in total) identified in the human genome. In summary, our findings reveal new insights about the functionality of CGs in terms of another possible mechanism for gene regulation and genomic evolution and the mechanism leading to their formation

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore