84 research outputs found

    Development of an Ultra-Lightweight Buckling-Restrained Brace Using Analytical and Numerical Methods

    Get PDF
    An ultra-lightweight buckling-restrained brace (ULWBRB) is developed using a highly ductile aluminum core and FRP restrainer. Utilization of lightweight materials results in a BRB that is 25% the weight of traditional mortar-filled tube varieties allowing easy installation in small to medium sized buildings requiring seismic retrofit without the need for heavy equipment. Construction utilizes commonly stocked materials able to be customized for required strength, drift, and geometry limitations. Analytical single degree of freedom (SDOF) and Euler buckling models are compared with published equations to determine the required restrainer stiffness (RRS). SDOF models yield RRS values 200% higher than the Euler model. Applied end moments due to frame deformation are incorporated into a modified design method that gives RRS values 50% higher than Euler model without eccentricity. RRS is provided using a bundled and wrapped FRP tube configuration using a developed shear flow method considering composite action. Uniaxial low-cycle fatigue (LCF) testing of a 6061-T6 candidate alloy provides data for a constitutive model using combined kinematic-isotropic hardening. LCF testing of round short gage coupons indicates the candidate alloy is capable of stable cycling to 2%, 3%, and 4% total strain with excellent ductility. Early fracture of specimens at 24, 18, and 11 cycles, respectively, also indicates that other candidate alloys should be examined for improved fatigue life. However, inconsistency is noted between similar tests of 6061-T6 that were able to achieve up to 76 cycles at 2.5% total strain. ULWBRB FEA models loaded monotonically consistently give higher RRS values as compared to the analytical methods. This is due to assignment of initial imperfections, longer more realistic unbraced length, higher axial loads achieved through the post-yield region, and plastic hinging potential. Cyclic simulations of braces with the same RRS values are also able to achieve reliable and stable hysteretic behavior through 21 cycles. If a less stiff restrainer is used, cumulative energy dissipation potential is reduced considerably due to pinched hysteresis loops and strain ratcheting. Applied end moments are found to have a linear effect on the RRS that can be modeled by superposition of the buckling effect plus end moment

    Climate-driven change in the North Atlantic and Arctic Ocean can greatly reduce the circulation of the North Sea

    Get PDF
    We demonstrate for the first time a direct oceanic link between climate‐driven change in the North Atlantic and Arctic oceans and the circulation of the northwest European shelf‐seas. Downscaled scenarios show a shutdown of the exchange between the Atlantic and the North Sea, and a substantial decrease in the circulation of the North Sea in the second half of the 21st Century. The northern North Sea inflow decreases from 1.2‐1.3Sv (1Sv=106 m3s‐1) to 0.0‐0.6Sv with Atlantic water largely bypassing the North Sea. This is traced to changes in oceanic haline stratification and gyre structure, and to a newly identified circulation‐salinity feedback. The scenario presented here is of a novel potential future state for the North Sea, with wide‐ranging environmental management and societal impacts. Specifically, the sea would become more estuarine and susceptible to anthropogenic influence with an enhanced risk of coastal eutrophication

    The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect

    Get PDF
    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps, coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8e14 Msun, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1e15 Msun and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.Comment: 20 pages, 15 figures, 6 tables. Accepted for publication in ApJ. Higher resolution figures available at: http://peumo.rutgers.edu/~felipe/e-prints

    The Atacama Cosmology Telescope: Dynamical Masses and Scaling Relations for a Sample of Massive Sunyaev-Zel'dovich Effect Selected Galaxy Clusters

    Get PDF
    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 sq. deg. area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R~700-800) spectra and redshifts for ~60 member galaxies on average per cluster. The dynamical masses M_200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z=0.50 and a median mass M_200c~12e14 Msun/h70 with a lower limit M_200c~6e14 Msun/h70, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y, the central Compton parameter y0, and the integrated Compton signal Y_200c, which we use to derive SZE-Mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (<~20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the 3-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ~50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations but given the current sample sizes these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.Comment: 15 pages, 4 figures. Accepted for publication in The Astrophysical Journal; matches published version. Full Table 8 with complete spectroscopic member sample available in machine-readable form in the journal site and upon request to C. Sif\'o

    The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    Full text link
    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives sigma_8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find sigma_8 = 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give sigma_8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.Comment: 12 pages, 7 figures. Submitted to Ap

    Riflessioni su alcune scelte traduttive in lingua inglese (Morris, Tinker, Tolkien, Heaney e Porter)

    Get PDF
    This essay takes into account some English translations of the Old English poem Beowulf. Matter of specific investigation is the passage of the coming of Grendel to the Danes' court Heorot. As the translations of Beowulf are countless, only specific and emblematic cases – both in prose and verse – are analysed. Then, the translations by William Morris, Chancey Brewster Tinker, J.R.R. Tolkien, Seamus Heaney and John Porter are compared trying to ascertain the approach of those translators to the Old English text and furthermore the intentions they had in rendering the poem into Modern English. The big problem that all the translators consciously tackled was the chronological and linguistic distance of Beowulf that had to be solved in some way. Choices and strategies differ from one version to another, but every solution demonstrates a specific attention to the musicalness of the original together with a deep awareness for the tradition that the Old English poem embodies

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A
    corecore