20 research outputs found
Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting
(1) Background: Paralympic Powerlifting (PP) is a Paralympic modality that is predominantly about developing maximal force, as there are athletes who lift three times their body weight. Our objective was to evaluate the averages of the velocity for 30% and 50% of 1 Maximum Repetition (1 RM) on different amplitudes of the footprint in PP athletes; (2) Methods: The intervention happened over two weeks, with the first being devoted to the familiarization and testing of 1 RM, while in the second week, through the use of a linear Encoder, tests of velocity average (VA), velocity average propulsive (VAP), and velocity peak (VP) were carried out with loads of 30% and 50% of a maximum repetition 1 RM for 1× of the biacromial distance (BAD) 1.3 × BAD, 1.5 × BAD; (3) Results: There was a significant difference in the average velocity of 1 × BAD (1.16 ± 0.14 m/s, 1.07–1.26 IC; η2p 0.20) when compared to 1.3 × BAD (1.00 ± 0.17 m/s, 0.90–1.09 IC; η2p 0.20) over 30% of 1 RM. For the other velocity variables for 30% and 50% of 1 RM with different grip amplitudes, there were no significant differences; (4) Conclusions: In PP, the 1 × BAD footprint contributes significantly to VA at 30% of 1 RM when compared to the 1.3 × BAD and 1.5 × BAD footprints. For loading at 50% of 1 RM the VA, VAP and VP decreased when compared to 30% of 1 RM, to the extent that the VAP and VP generated with the 1.3 × BAD and 1.5 × BAD footprints were higher than those with 1 × BAD, other than for VA 50% of 1 RM, where the 1 × BAD footprint was superior to the others
Control of Mycobacterium fortuitum and Mycobacterium intracellulare infections with respect to distinct granuloma formations in livers of BALB/c mice
Mycobacterium fortuitum is a rapidly growing nontuberculous Mycobacterium that can cause a range of diseases in humans. Complications from M. fortuitum infection have been associated with numerous surgical procedures. A protective immune response against pathogenic mycobacterial infections is dependent on the granuloma formation. Within the granuloma, the macrophage effector response can inhibit bacterial replication and mediate the intracellular killing of bacteria. The granulomatous responses of BALB/c mice to rapidly and slowly growing mycobacteria were assessed in vivo and the bacterial loads in spleens and livers from M. fortuitum and Mycobacterium intracellulare-infected mice, as well as the number and size of granulomas in liver sections, were quantified. Bacterial loads were found to be approximately two times lower in M. fortuitum-infected mice than in M. intracellulare-infected mice and M. fortuitum-infected mice presented fewer granulomas compared to M. intracellulare-infected mice. These granulomas were characterized by the presence of Mac-1+ and CD4+ cells. Additionally, IFN-γmRNA expression was higher in the livers of M. fortuitum-infected mice than in those of M. intracellulare-infected mice. These data clearly show that mice are more capable of controlling an infection with M. fortuitum than M. intracellulare. This capacity is likely related to distinct granuloma formations in mice infected with M. fortuitum but not with M. intracellulare
Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016
Background: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97\ub71 (95% UI 95\ub78-98\ub71) in Iceland, followed by 96\ub76 (94\ub79-97\ub79) in Norway and 96\ub71 (94\ub75-97\ub73) in the Netherlands, to values as low as 18\ub76 (13\ub71-24\ub74) in the Central African Republic, 19\ub70 (14\ub73-23\ub77) in Somalia, and 23\ub74 (20\ub72-26\ub78) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91\ub75 (89\ub71-93\ub76) in Beijing to 48\ub70 (43\ub74-53\ub72) in Tibet (a 43\ub75-point difference), while India saw a 30\ub78-point disparity, from 64\ub78 (59\ub76-68\ub78) in Goa to 34\ub70 (30\ub73-38\ub71) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4\ub78-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20\ub79-point to 17\ub70-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17\ub72-point to 20\ub74-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations
Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016
Copyright © 2018 The Author(s). Published by Elsevier Ltd. Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view - and subsequent provision - of quality health care for all populations
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016.
BACKGROUND: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. METHODS: Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita
Control of Mycobacterium fortuitum and Mycobacterium intracellulare infections with respect to distinct granuloma formations in livers of BALB/c mice
Mycobacterium fortuitum is a rapidly growing nontuberculous
Mycobacterium that can cause a range of diseases in humans.
Complications from M. fortuitum infection have been associated with
numerous surgical procedures. A protective immune response against
pathogenic mycobacterial infections is dependent on the granuloma
formation. Within the granuloma, the macrophage effector response can
inhibit bacterial replication and mediate the intracellular killing of
bacteria. The granulomatous responses of BALB/c mice to rapidly and
slowly growing mycobacteria were assessed in vivo and the bacterial
loads in spleens and livers from M. fortuitum and Mycobacterium
intracellulare -infected mice, as well as the number and size of
granulomas in liver sections, were quantified. Bacterial loads were
found to be approximately two times lower in M. fortuitum -infected
mice than in M. intracellulare-infected mice and M. fortuitum -infected
mice presented fewer granulomas compared to M. intracellulare-infected
mice. These granulomas were characterized by the presence of Mac-1+ and
CD4+ cells. Additionally, IFN-γmRNA expression was higher in the
livers of M. fortuitum -infected mice than in those of M.
intracellulare-infected mice. These data clearly show that mice are
more capable of controlling an infection with M. fortuitum than M.
intracellulare. This capacity is likely related to distinct granuloma
formations in mice infected with M. fortuitum but not with M.
intracellulare
Control of Mycobacterium fortuitum and Mycobacterium intracellulare infections with respect to distinct granuloma formations in livers of BALB/c mice
Mycobacterium fortuitum is a rapidly growing nontuberculous Mycobacterium that can cause a range of diseases in humans. Complications from M. fortuitum infection have been associated with numerous surgical procedures. A protective immune response against pathogenic mycobacterial infections is dependent on the granuloma formation. Within the granuloma, the macrophage effector response can inhibit bacterial replication and mediate the intracellular killing of bacteria. The granulomatous responses of BALB/c mice to rapidly and slowly growing mycobacteria were assessed in vivo and the bacterial loads in spleens and livers from M. fortuitum and Mycobacterium intracellulare-infected mice, as well as the number and size of granulomas in liver sections, were quantified. Bacterial loads were found to be approximately two times lower in M. fortuitum-infected mice than in M. intracellulare-infected mice and M. fortuitum-infected mice presented fewer granulomas compared to M. intracellulare-infected mice. These granulomas were characterized by the presence of Mac-1+ and CD4+ cells. Additionally, IFN-γmRNA expression was higher in the livers of M. fortuitum-infected mice than in those of M. intracellulare-infected mice. These data clearly show that mice are more capable of controlling an infection with M. fortuitum than M. intracellulare. This capacity is likely related to distinct granuloma formations in mice infected with M. fortuitum but not with M. intracellulare
Evaluation of the Post-Training Hypotensor Effect in Paralympic and Conventional Powerlifting
High blood pressure (HBP) has been associated with several complications and causes of death. The objective of the study was to analyze the hemodynamic responses in Paralympic bench press powerlifting (PP) and conventional powerlifting (CP) before and after training and up to 60 minutes (min) after training. Ten PP and 10 CP athletes performed five sets of five repetition maximal bench press exercises, and we evaluated systolic, diastolic, and mean blood pressure (SBP, DBP, and MBP, respectively), heart rate (HR), heart pressure product (HPP), and myocardial oxygen volume (MVO2). The SBP increased after training (p < 0.001), and there were differences in the post training and 30, 40, and 60 min later (p = 0.021), between 10 and 40 min after training (p = 0.031, η2p = 0.570), and between CP and PP (p =0.028, η2p = 0.570). In the MBP, there were differences between before and after (p = 0.016) and 40 min later (p = 0.040, η2p = 0.309). In the HR, there was a difference between before and after, and 5 and 10 min later (p = 0.002), and between after and 10, 20, 30, 40, 50, and 60 min later (p < 0.001, η2p = 0.767). In HPP and MVO2, there were differences between before and after (p = 0.006), and between after and 5, 10, 20, 30, 40, 50, and 60 min later (p < 0.001, η2p = 0.816). In CP and PP, there is no risk of hemodynamic overload to athletes, considering the results of the HPP, and training promotes a moderate hypotensive effect, with blood pressure adaptation after and 60 min after exercise
Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting
(1) Background: Paralympic Powerlifting (PP) is a Paralympic modality that is predominantly about developing maximal force, as there are athletes who lift three times their body weight. Our objective was to evaluate the averages of the velocity for 30% and 50% of 1 Maximum Repetition (1 RM) on different amplitudes of the footprint in PP athletes; (2) Methods: The intervention happened over two weeks, with the first being devoted to the familiarization and testing of 1 RM, while in the second week, through the use of a linear Encoder, tests of velocity average (VA), velocity average propulsive (VAP), and velocity peak (VP) were carried out with loads of 30% and 50% of a maximum repetition 1 RM for 1× of the biacromial distance (BAD) 1.3 × BAD, 1.5 × BAD; (3) Results: There was a significant difference in the average velocity of 1 × BAD (1.16 ± 0.14 m/s, 1.07–1.26 IC; η2p 0.20) when compared to 1.3 × BAD (1.00 ± 0.17 m/s, 0.90–1.09 IC; η2p 0.20) over 30% of 1 RM. For the other velocity variables for 30% and 50% of 1 RM with different grip amplitudes, there were no significant differences; (4) Conclusions: In PP, the 1 × BAD footprint contributes significantly to VA at 30% of 1 RM when compared to the 1.3 × BAD and 1.5 × BAD footprints. For loading at 50% of 1 RM the VA, VAP and VP decreased when compared to 30% of 1 RM, to the extent that the VAP and VP generated with the 1.3 × BAD and 1.5 × BAD footprints were higher than those with 1 × BAD, other than for VA 50% of 1 RM, where the 1 × BAD footprint was superior to the others