43 research outputs found
Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics
The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals
Clinical characteristics and complications of rotavirus gastroenteritis in children in east London: A retrospective case-control study.
BACKGROUND: Rotavirus is the leading cause of acute gastroenteritis in children and is associated with neurological complications such as seizures and encephalopathy. The aim of this study was to investigate the presentation and complications of rotavirus compared to non-rotavirus gastroenteritis in UK children. METHODS: This was a retrospective, case-control, hospital-based study conducted at three sites in east London, UK. Cases were children aged 1 month to 16 years diagnosed with acute gastroenteritis between 1 June 2011 and 31 December 2013, in whom stool virology investigations confirmed presence of rotavirus by PCR. They were matched by age, gender and month of presentation to controls with rotavirus-negative gastroenteritis. RESULTS: Data were collected from 116 children (50 cases and 66 controls). Children with rotavirus gastroenteritis tended to present more frequently with metabolic acidosis (pH 7.30 vs 7.37, P = 0.011) and fever (74% versus 46%; P = 0.005) and were more likely to require hospitalisation compared to children with non-rotavirus gastroenteritis (93% versus 73%; P = 0.019). Neurological complications were the most common extra-intestinal manifestations, but did not differ significantly between children with rotavirus-positive gastroenteritis (RPG) and rotavirus-negative gastroenteritis (RNG) (24% versus 15%, respectively; P = 0.24). Encephalopathy occurred only in children with rotavirus infection (n = 3, 6%). CONCLUSION: Rotavirus causes longer and more severe disease compared to other viral pathogens. Seizures and milder neurological signs were surprisingly common and associated with multiple pathogens, but encephalopathy occurred only in children with rotavirus gastroenteritis. Rotavirus vaccination may reduce seizures and presentation to hospital, but vaccines against other pathogens causing gastroenteritis are required.AJP receives funding from the Wellcome Trust (grant 108065/Z/15/Z)
The Biochemical and Cellular Basis for Nutraceutical Strategies to Attenuate Neurodegeneration in Parkinson’s Disease
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible