779 research outputs found

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Localization of electromagnetic waves in a two dimensional random medium

    Full text link
    Motivated by previous investigations on the radiative effects of the electric dipoles embedded in structured cavities, localization of electromagnetic waves in two dimensions is studied {\it ab initio} for a system consisting of many randomly distributed two dimensional dipoles. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for the total electromagnetic field. The results show that spatially localized electromagnetic waves are possible in such a simple but realistic disordered system. When localization occurs, a coherent behavior appears and is revealed as a unique property differentiating localization from either the residual absorption or the attenuation effects

    Accurate mass and radius determinations of a cool subdwarf in an eclipsing binary

    Get PDF
    Cool subdwarfs are metal-poor low-mass stars that formed during the early stages of the evolution of our Galaxy. Because they are relatively rare in the vicinity of the Sun, we know of few cool subdwarfs in the solar neighbourhood, and none for which both the mass and the radius are accurately determined. This hampers our understanding of stars at the low-mass end of the main sequence. Here we report the discovery of SDSSJ235524.29+044855.7 as an eclipsing binary containing a cool subdwarf star, with a white dwarf companion. From the light curve and the radial-velocity curve of the binary we determine the mass and the radius of the cool subdwarf and we derive its effective temperature and luminosity by analysing its spectral energy distribution. Our results validate the theoretical relations between mass, radius, effective temperature and luminosity for low-mass, low-metallicity stars

    Calibration of the length of a chain of single gold atoms

    Get PDF
    Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ~3.6 Angstrom was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the inter-atomic distance before chain rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.Comment: 6 pages, 6 figure

    The landscape of gifted and talented education in England and Wales: How are teachers implementing policy?

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Research Papers in Education, 27(2), 167-186, 2012, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/02671522.2010.509514.This paper explores the evidence relating to how primary schools are responding to the ‘gifted and talented’ initiative in England and Wales. A questionnaire survey which invited both closed and open-ended responses was carried out with a national sample of primary schools. The survey indicated an increasing proportion of coordinators, compared with a survey carried out in 1996, were identifying their gifted and talented children as well as having associated school policies. However, the survey also highlighted a number of issues which need addressing if the initiative is to achieve its objective of providing the best possible educational opportunities for children. For example, it was found that a significant number of practitioners were not aware of the existence of the National Quality Standards for gifted and talented education, provided by the UK government in 2007, and the subject-specific criteria provided by the UK’s Curriculum Authority for identification and provision have been largely ignored. The process of identifying children to be placed on the ‘gifted and talented’ register seems haphazard and based on pragmatic reasons. Analysis of teachers’ responses also revealed a range of views and theoretical positioning held by them, which have implications for classroom practice. As the ‘gifted and talented’ initiative in the UK is entering a second decade, and yet more significant changes in policy are introduced, pertinent questions need to be raised and given consideration

    Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium

    Full text link
    In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan, et al. (J. Opt. Soc. Am. B {\bf 10}, 391 (1993)). A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with travelling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases that the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems (Asatryan, et al., Phys. Rev. E {\bf 67}, 036605 (2003).)Comment: 8 pages 9 figure

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Gaia white dwarfs within 40 pc I : spectroscopic observations of new candidates

    Get PDF
    We present a spectroscopic survey of 230 white dwarf candidates within 40 pc of the Sun from the William Herschel Telescope and Gran Telescopio Canarias. All candidates were selected from Gaia Data Release 2 (DR2) and in almost all cases had no prior spectroscopic classifications. We find a total of 191 confirmed white dwarfs and 39 main-sequence star contaminants. The majority of stellar remnants in the sample are relatively cool (〈Teff〉 = 6200 K), showing either hydrogen Balmer lines or a featureless spectrum, corresponding to 89 DA and 76 DC white dwarfs, respectively. We also recover two DBA white dwarfs and 9–10 magnetic remnants. We find two carbon-bearing DQ stars and 14 new metal-rich white dwarfs. This includes the possible detection of the first ultra-cool white dwarf with metal lines. We describe three DZ stars for which we find at least four different metal species, including one which is strongly Fe- and Ni-rich, indicative of the accretion of a planetesimal with core-Earth composition. We find one extremely massive (1.31 ± 0.01 M⊙) DA white dwarf showing weak Balmer lines, possibly indicating stellar magnetism. Another white dwarf shows strong Balmer line emission but no infrared excess, suggesting a low-mass sub-stellar companion. High spectroscopic completeness (>99%) has now been reached for Gaia DR2 sources within 40 pc sample, in the northern hemisphere (δ > 0 deg) and located on the white dwarf cooling track in the Hertzsprung-Russell diagram. A statistical study of the full northern sample is presented in a companion paper

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore