639 research outputs found

    Identification of Novel QTLs for BPH Tolerance in Rice Using Resistant Donor BM 71

    Get PDF
    Rice is the most widely grown crop in the world, feeding half of the world’s population. Brown plant hopper (BPH) is a considerable risk to rice fields carrying 20-90% yield losses. Hopper burn can be effectively managed by the recognition and use of BPH genes. Marker based genetic analysis of 136 RILcollected from a high yielding susceptible variety, MTU 3626 and BM 71, a BPH donor developed at RARS, identified 3 minor novel QTLs viz; qmbph2.1,qmbph4.1 and qmbph12.1 on chromosomes 2, 4 and 12 and two other QTLson chromosome 5 and 7, namelyqmbph5.1 and qmbph7.1. The phenotyping of RIL’s revealed that ten RIL’s (2711 – 31, 2711 – 37, 2711 – 50, 2711 – 69, 2711 – 84, 2711 – 88, 2711 – 94, 2711 – 100, 2711 – 168 and 2711 – 191) recorded yields comparable to checks, Swarna and Pushyami along with BPH score similar to donor. The BPH resistance lines recognised will be further evaluated, and the confirmed lines can be employed in rice breeding programs

    Mass independence and asymmetry of the reaction: Multi-fragmentation as an example

    Full text link
    We present our recent results on the fragmentation by varying the mass asymmetry of the reaction between 0.2 and 0.7 at an incident energy of 250 MeV/nucleon. For the present study, the total mass of the system is kept constant (ATOT = 152) and mass asymmetry of the reaction is defined by the asymmetry parameter (? = | (AT - AP)/(AT + AP) |). The measured distributions are shown as a function of the total charge of all projectile fragments, Zbound. We see an interesting outcome for rise and fall in the production of intermediate mass fragments (IMFs) for large asymmetric colliding nuclei. This trend, however, is completely missing for large asymmetric nuclei. Therefore, experiments are needed to verify this prediction

    Long-Term Gemcitabine Treatment Reshapes the Pancreatic Tumor Microenvironment and Sensitizes Murine Carcinoma to Combination Immunotherapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death with a median survival time of 6–12 months. Most patients present with disseminated disease and the majority are offered palliative chemotherapy. With no approved treatment modalities for patients who progress on chemotherapy, we explored the effects of long-term Gemcitabine on the tumor microenvironment in order to identify potential therapeutic options for chemo-refractory PDAC. Using a combination of mouse models, primary cell line-derived xenografts, and established tumor cell lines, we first evaluated chemotherapy-induced alterations in the tumor secretome and immune surface proteins by high throughput proteomic arrays. In addition to enhancing antigen presentation and immune checkpoint expression, Gemcitabine consistently increased the synthesis of CCL/CXCL chemokines and TGFβ-associated signals. These secreted factors altered the composition of the tumor stroma, conferring Gemcitabine resistance to cancer-associated fibroblasts in vitro and further enhancing TGFβ1 biosynthesis. Combined Gemcitabine and anti-PD-1 treatment in transgenic models of murine PDAC failed to alter disease course unless mice also underwent genetic or pharmacologic ablation of TGFβ signaling. In the setting of TGFβ signaling deficiency, Gemcitabine and anti-PD-1 led to a robust CD8+ T-cell response and decrease in tumor burden, markedly enhancing overall survival. These results suggest that Gemcitabine successfully primes PDAC tumors for immune checkpoint inhibition by enhancing antigen presentation only following disruption of the immunosuppressive cytokine barrier. Given the current lack of third-line treatment options, this approach warrants consideration in the clinical management of Gemcitabine-refractory PDAC

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Electroweak production of two jets in association with a Z boson in proton-proton collisions root s =13 TeV

    Get PDF
    A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at root s = 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lljj final state with l including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses m(ll) > 50 GeV, m(jj) > 120 GeV, and transverse momenta P-Tj > 25 GeV is sigma(EW) (lljj) = 534 +/- 20 (stat) fb (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.6 <cwww/Lambda(2) <2.6 TeV-2 and -8.4 <cw/Lambda(2) <10.1 TeV-2. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.Peer reviewe
    corecore