889 research outputs found

    Visualization of Intracellular Transport of Vesicular Stomatitis Virus Nucleocapsids in Living Cells

    Get PDF
    The phosphoprotein (P) of vesicular stomatitis virus (VSV) is a subunit of the viral RNA polymerase. In previous studies, we demonstrated that insertion of 19 amino acids in the hinge region of the protein had no significant effect on P protein function. In the present study, we inserted full-length enhanced green fluorescent protein (eGFP) in frame into the hinge region of P and show that the fusion protein (PeGFP) is functional in viral genome transcription and replication, albeit with reduced activity. A recombinant vesicular stomatitis virus encoding PeGFP in place of the P protein (VSV-PeGFP), which possessed reduced growth kinetics compared to the wild-type VSV, was recovered. Using the recombinant VSV-PeGFP, we show that the viral replication proteins and the de novo-synthesized RNA colocalize to sites throughout the cytoplasm, indicating that replication and transcription are not confined to any particular region of the cytoplasm. Real-time imaging of the cells infected with the eGFP-tagged virus revealed that, following synthesis, the nucleocapsids are transported toward the cell periphery via a microtubule (MT)-mediated process, and the nucleocapsids were seen to be closely associated with mitochondria. Treatment of cells with nocodazole or Colcemid, drugs known to inhibit MT polymerization, resulted in accumulation of the nucleocapsids around the nucleus and also led to inhibition of infectious-virus production. These findings are compatible with a model in which the progeny viral nucleocapsids are transported toward the cell periphery by MT and the transport may be facilitated by mitochondria

    A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus

    Get PDF
    Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene

    A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus

    Get PDF
    Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene

    Socio-economic impact of COVID-19 pandemic on dairy farm households in West Bengal state

    Get PDF
    India is one of the leading economies that have been stuck hard by the COVID-19 pandemic and the stringent measures were put in place to combat it. Among several sectors, dairy sector is the most affected as dairy products are highly perishable and rely on time-sensitive supply chains. Though studies are available on the impact of COVID-19 pandemic on dairy sector, there are no studies on COVID-infected dairy farm households. The present study was an attempt to assess the socio-economic impact of COVID-19 pandemic on infected and uninfected dairy farm households in West Bengal. The study covered pre-lockdown, lockdown (both 1st and 2nd wave) and post-lockdown phases of COVID-19 pandemic. The primary data was collected from 150 dairy farm households (COVID-19 infected-75 and uninfected-75) in Murshidabad and Nadia districts of West Bengal. Dairy Economic Performance Index consisting of number of milch animals, milk yield, marketed milk, milk procurement price, concentrate price and veterinary cost was developed using principal component analysis. In order to make infected and uninfected groups statistically comparable, propensity score matching technique was employed. The index values were compared between matched infected and uninfected groups over different phases of COVID-19 pandemic. Dairy households incurred significant economic losses during the lockdown and post-lockdown periods due to increase in cost of concentrates, decline in the number of milch animals and drop in milk procurement prices. Dairy households faced constraints in procuring dry fodder, concentrate feed and in accessing veterinary care. COVID-19 infected dairy farm households had a greater socio-economic hurdle than that of uninfected households

    Proizvodne varijable koje utječu na svojstva peleta u peletiranju taljenjem sa smjesom voskova u sferonizatoru za laboratorijsku proizvodnju

    Get PDF
    The purpose of the study was to evaluate the suitability of laboratory scale spheronizer for the production of spherical pellets loaded with diltiazem hydrochloride by wax combination. The 1:1 combination of cetyl alcohol and hydrogenated castor oil, as low and high melting point waxes, were used. The various production variables affecting the different characteristics of pellets and the process efficiency were evaluated. Drug loaded pellets were evaluated for drug release in distilled water. Bowl temperature primarily affects the sphericity and adhesion of pellets to the bowl. Mass temperature has a pronounced effect on size, size distribution and sphericity of pellets. Wax concentration affects all characteristics of pellets but adhesion was least affected. The effect of these three variables can be compensated by optimizing the friction plate speed. It has been found that the highest yield of pellets (8501400 m) with maximum sphericity can be produced by using 45 C bowl temperature, 52 C mass temperature and 1400 rpm friction plate speed.Cilj rada bio je pripraviti sferične pelete u laboratorijskom sferonizatoru koristeći smjesu voskova. Cetilni alkohol kao vosak niskog tališta i hidrogenirano ricinusovo ulje kao vosak visokog tališta, upotrebljeni su u omjeru 1:1. Proučavan je utjecaj proizvodnih varijabli na svojstva peleta i efikasnost proizvodnje te brzinu oslobađanja ljekovite tvari iz peleta u destiliranoj vodi. Na sferičnost i adhezivnost peleta najviše utječe temperatura peletiranja. Temperatura mase ima i značajan utjecaj na veličinu, raspodjelu veličine peleta i sferičnost. Koncentracija voska utječe na sva svojstva peleta, ali najmanje na adhezivnost. Učinak tih triju varijabli može se kompenzirati optimiziranjem brzine ploče za trenje. Pronađeno je da najveće iskorištenje peleta (8501400 microm) s najboljom sferičnošću ako je temperatura peletiranja 45 oC, temperatura mase 52 oC, a brzina ploče za trenje 1400 rpm

    Rescue of a chimeric rinderpest virus with the nucleocapsid protein derived from peste-des-petits-ruminants virus: use as a marker vaccine

    Get PDF
    The nucleocapsid (N) protein of all morbilliviruses has a highly conserved central region that is thought to interact with and encapsidate the viral RNA. The C-terminal third of the N protein is highly variable among morbilliviruses and is thought to be located on the outer surface and to be available to interact with other viral proteins such as the phosphoprotein, the polymerase protein and the matrix protein. Using reverse genetics, a chimeric rinderpest virus (RPV)/peste-des-petits-ruminants virus (PPRV) was rescued in which the RPV N gene open reading frame had been replaced with that of PPRV (RPV–PPRN). The chimeric virus maintained efficient replication in cell culture. Cattle vaccinated with this chimeric vaccine showed no adverse reaction and were protected from subsequent challenge with wild-type RPV, indicating it to be a safe and efficacious vaccine. The carboxyl-terminal variable region of the rinderpest N protein was cloned and expressed in Escherichia coli. The expressed protein was used to develop an indirect ELISA that could clearly differentiate between RPV- and PPRV-infected animals. The possibility of using this virus as a marker vaccine in association with a new diagnostic ELISA in the rinderpest eradication programme is discussed

    Selection of antigenically advanced variants of seasonal influenza viruses.

    Get PDF
    Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014-2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.This work was supported by the Bill & Melinda Gates Foundation Global Health Grant OPPGH5383; National Institute of Allergy and Infectious Diseases (NIAID) Public Health Service research grants (USA); ERATO (Japan Science and Technology Agency); the Center for Research on Influenza Pathogenesis (CRIP) funded by the NIAID Contracts HHSN266200700010C and HHSN27 2201400008C; the Japan Initiative for Global Research Network on Infectious Diseases; Grants-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; Grants-in-Aid from the Ministry of Health, Labour and Welfare, Japan; grants from the Strategic Basic Research Program of the Japan Science and Technology Agency; and by the Advanced Research & Development Programs for Medical Innovation from the Japan Agency for Medical Research and Development (AMED). C.A.R. was supported by a University Research Fellowship from the Royal Society. The authors acknowledge a Netherlands Organisation for Scientific Research (NWO) VICI grant, European Union (EU) FP7 programs EMPERIE (223498) and ANTIGONE (278976); Human Frontier Science Program (HFSP) program grant P0050/2008; Wellcome 087982AIA; and NIH Director's Pioneer Award DP1-OD000490-01. D.F.B and D.J.S. acknowledge CamGrid, the University of Cambridge distributed computer system. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmicrobiol.2016.5

    Matrix metalloproteinases in chemoresistance: regulatory roles, molecular interactions, and potential inhibitors

    Get PDF
    Cancer is one of the major causes of death worldwide. Its treatments usually fail when the tumor has become malignant and metastasized. Metastasis is a key source of cancer recurrence, which often leads to resistance towards chemotherapeutic agents. Hence, most cancer-related deaths are linked to the occurrence of chemoresistance. Although chemoresistance can emerge through a multitude of mechanisms, chemoresistance and metastasis share a similar pathway, which is an epithelial-to-mesenchymal transition (EMT). Matrix metalloproteinases (MMPs), a class of zinc and calcium-chelated enzymes, are found to be key players in driving cancer migration and metastasis through EMT induction. The aim of this review is to discuss the regulatory roles and associated molecular mechanisms of specific MMPs in regulating chemoresistance, particularly EMT initiation and resistance to apoptosis. A brief presentation on their potential diagnostic and prognostic values was also deciphered. It also aimed to describe existing MMP inhibitors and the potential of utilizing other strategies to inhibit MMPs to reduce chemoresistance, such as upstream inhibition of MMP expressions and MMP-responsive nanomaterials to deliver drugs as well as epigenetic regulations. Hence, manipulation of MMP expression can be a powerful tool to aid in treating patients with chemo-resistant cancers. However, much still needs to be done to bring the solution from bench to bedside

    Selection of antigenically advanced variants of seasonal influenza viruses

    Get PDF
    Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent se

    Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe
    corecore