469 research outputs found

    Placement Distance of Exit Advance Guide Sign on an Eight-Lane Expressway Considering Lane Changing Behaviour in China

    Get PDF
    The reasonable placement of the advance guide signs (AGSs) is important in improving driving efficiency and safety when exiting an expressway. By analysing the lane-changing process when approaching an exit on new two-way eight-lane expressways, we modified the tradi-tional AGS model lane-change distance formula. To this end, a field experiment was designed to explore the lane-change traversal time at the free flow condition (LOS 1). Considering the limitations of the experimental equip-ment, lane change distance at the worst levels of service was explored using VISSIM simulation. The results show that the eight-lane changing distance based on modified theoretical calculations, revealed a minor difference with VISSIM simulation in free flow condition. Further-more, placement distance at the worst levels of service are discussed. Then placement distance of all-level AGSs is recommended to be 3 km, 2 km, 1.2 km, and 0.8 km, considering the driver\u27s short-term memory attenuation calculation formula. Determining the two-way eight-lane AGS placement distance from the perspective of LOS can provide a basis on which to supplement the existing stan-dards and references for the AGS placement distance af-ter the expressway expansion in China

    Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2

    Full text link
    Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN encapsulated single-layer WSe2. The biexciton state only exists in charge neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications

    Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe

    Full text link
    Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with superior advantages of being flexible, transparent and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe unveil high sensitivity and tunable responsivity to visible light. However, the device yield and the repeatability call for a further improvement of the 2D materials to render large-scale uniformity. Here we report a layer-by-layer growth of wafer-scale GaTe with a hole mobility of 28.4 cm2/Vs by molecular beam epitaxy. The arrayed p-n junctions were developed by growing few-layer GaTe directly on three-inch Si wafers. The resultant diodes reveal good rectifying characteristics, photoresponse with a maximum photoresponsivity of 2.74 A/W and a high photovoltaic external quantum efficiency up to 62%. The photocurrent reaches saturation fast enough to capture a time constant of 22 {\mu}s and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photo-images were acquired by the GaTe/Si photodiodes with a reasonable contrast and spatial resolution, demonstrating for the first time the potential of integrating the 2D materials with the silicon technology for novel optoelectronic devices

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore