87 research outputs found

    The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick AGN

    Get PDF
    The Circinus galaxy is one of the nearest obscured AGN, making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton-scattering by an optically-thick torus, where the intrinsic spectrum is a powerlaw of photon index Γ=2.22.4\Gamma = 2.2-2.4, the torus has an equatorial column density of NH=(610)×1024N_{\rm H} = (6-10)\times10^{24}cm2^{-2} and the intrinsic AGN 2102-10 keV luminosity is (2.35.1)×1042(2.3-5.1)\times 10^{42} erg/s. These values place Circinus along the same relations as unobscured AGN in accretion rate-vs-Γ\Gamma and LXL_X-vs-LIRL_{IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short time-scale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the the spectral fitting results.Comment: Accepted for publication in Ap

    Status of the XMM-Newton cross-calibration with SASv6.5.0

    Full text link
    Further achievements of the XMM-Newton cross-calibration - XMM internal as well as with other X-ray missions - are presented. We explain the major changes in the new version SASv6.5 of the XMM-Newton science analysis system. The current status of the cross-calibration of the three EPIC cameras is shown. Using a large sample of blazars, the pn energy redistribution at low energy could be further calibrated, correcting the overestimation of fluxes in the lowest energy regime. In the central CCDs of the MOSs, patches were identified at the bore-sight positions, leading to an underestimation of the low energy fluxes. The further improvement in the understanding of the cameras resulted in a good agreement of the EPIC instruments down to lowest energies. The latest release of the SAS software package already includes corrections for both effects as shown in several examples of different types of sources. Finally the XMM internal cross-calibration is completed by the presentation of the current cross-calibration status between EPIC and RGS instruments. Major efforts have been made in cross-calibrations with other X-ray missions, most importantly with Chandra, of course, but also with currently observing satellites like Swift.Comment: 6 pages, 23 figures. To appear in the proceedings of "The X-Ray Universe 2005" conference, 2005 Sept 26-30, El Escorial, Madrid, Spai

    Non-beneficial pediatric research : individual and social interests

    Get PDF
    Biomedical research involving human subjects is an arena of conflicts of interests. One of the most important conflicts is between interests of participants and interests of future patients. Legal regulations and ethical guidelines are instruments designed to help find a fair balance between risks and burdens taken by research subjects and development of knowledge and new treatment. There is an universally accepted ethical principle, which states that it is not ethically allowed to sacrifice individual interests for the sake of society and science. This is the principle of precedence of individual. But there is a problem with how to interpret the principle of precedence of individual in the context of research without prospect of future benefit involving children. There are proposals trying to reconcile non-beneficial research involving children with the concept of the best interests. We assert that this reconciliation is flawed and propose an interpretation of the principle of precedence of individual as follows: not all, but only the most important interests of participants, must be guaranteed; this principle should be interpreted as the secure participant standard. In consequence, the issue of permissible risk ceiling becomes ethically crucial in research with incompetent subjects

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    ETA CARINAE'S THERMAL X-RAY TAIL MEASURED with XMM-Newton and NuSTAR

    Get PDF
    The evolved, massive highly eccentric binary system, η Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ∼50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ∼ 6 keV plasma. This temperature is ΔkT ∼ 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual η Car observations. The column density to the hardest emission component, NH ∼ 1024 H cm-2, marked one of the highest values ever observed for η Car, strongly suggesting increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the non-detection by NuSTAR is caused by absorption, the power-law source must be small and located very near the wind-wind collision apex. Alternatively, it may be that the power-law source is not related to either η Car or the GeV γ-ray source

    Risk factors of migraine-related brain white matter hyperintensities: an investigation of 186 patients

    Get PDF
    Brain white matter hyperintensities are more prevalent in migraine patients than in the general population, but the pathogenesis and the risk factors of these hyperintensities are not fully elucidated. The authors analyzed the routine clinical data of 186 migraine patients who were referred to the Outpatient Headache Department of the Department of Neurology, Medical School, University of Pécs, Hungary between 2007 and 2009: 58 patients with white matter hyperintensities and 128 patients without white matter hyperintensities on 3 T MRI. Significant associations between the presence of white matter hyperintensities and longer disease duration (14.4 vs. 19.9 years, p = 0.004), higher headache frequency (4.1 vs. 5.5 attacks/month, p = 0.017), hyperhomocysteinemia (incidence of hyperintensity is 9/9 = 100%, p = 0.009) and thyroid gland dysfunction (incidence of hyperintensity is 8/14 = 57.1%, p = 0.038) were found. These data support the theory that both the disease duration and the attack frequency have a key role in the formation of migraine-related brain white matter hyperintensities, but the effects of comorbid diseases may also contribute to the development of the hyperintensities

    Energy Levels of Light Nuclei. III

    Full text link

    Evolution of a Marswalk

    No full text
    corecore