149 research outputs found

    On Signals Imbedded in Noise: Report R-2 (Second Running)

    Get PDF
    Control Systems Laboratory changed its name to Coordinated Science LaboratoryContract DA-11-022-ORD-17

    The diagonalization of quantum field Hamiltonians

    Full text link
    We introduce a new diagonalization method called quasi-sparse eigenvector diagonalization which finds the most important basis vectors of the low energy eigenstates of a quantum Hamiltonian. It can operate using any basis, either orthogonal or non-orthogonal, and any sparse Hamiltonian, either Hermitian, non-Hermitian, finite-dimensional, or infinite-dimensional. The method is part of a new computational approach which combines both diagonalization and Monte Carlo techniques.Comment: 12 pages, 8 figures, new material adde

    Renormalization of Tamm-Dancoff Integral Equations

    Full text link
    During the last few years, interest has arisen in using light-front Tamm-Dancoff field theory to describe relativistic bound states for theories such as QCD. Unfortunately, difficult renormalization problems stand in the way. We introduce a general, non-perturbative approach to renormalization that is well suited for the ultraviolet and, presumably, the infrared divergences found in these systems. We reexpress the renormalization problem in terms of a set of coupled inhomogeneous integral equations, the ``counterterm equation.'' The solution of this equation provides a kernel for the Tamm-Dancoff integral equations which generates states that are independent of any cutoffs. We also introduce a Rayleigh-Ritz approach to numerical solution of the counterterm equation. Using our approach to renormalization, we examine several ultraviolet divergent models. Finally, we use the Rayleigh-Ritz approach to find the counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01

    Six-body Light-Front Tamm-Dancoff approximation and wave functions for the massive Schwinger model

    Full text link
    The spectrum of the massive Schwinger model in the strong coupling region is obtained by using the light-front Tamm-Dancoff (LFTD) approximation up to including six-body states. We numerically confirm that the two-meson bound state has a negligibly small six-body component. Emphasis is on the usefulness of the information about states (wave functions). It is used for identifying the three-meson bound state among the states below the three-meson threshold. We also show that the two-meson bound state is well described by the wave function of the relative motion.Comment: 19 pages, RevTeX, 7 figures are available upon request; Minor errors have been corrected; Final version to appear in Phys.Rev.

    Nuclear forces from chiral Lagrangians using the method of unitary transformation I: Formalism

    Full text link
    We construct the two- and three-nucleon potential based on the most general chiral effective pion-nucleon Lagrangian using the method of unitary transformations. For that, we develop a power counting scheme consistent with this projection formalism. In contrast to previous results obtained in old-fashioned time-ordered perturbation theory, the method employed leads to energy-independent potentials. We discuss in detail the similarities and differences to the existing chiral nucleon-nucleon potentials. We also show that to leading order in the power counting, the three-nucleon forces vanish lending credit to the result obtained by Weinberg using old-fashioned time-ordered perturbation theory.Comment: 27 pp, LaTeX file, 8 figures (uses epsf

    Flow equations for QED in the light front dynamics

    Full text link
    The method of flow equations is applied to QED on the light front. Requiring that the partical number conserving terms in the Hamiltonian are considered to be diagonal and the other terms off-diagonal an effective Hamiltonian is obtained which reduces the positronium problem to a two-particle problem, since the particle number violating contributions are eliminated. No infrared divergencies appear. The ultraviolet renormalization can be performed simultaneously.Comment: 15 pages, Latex, 3 pictures, Submitted to Phys.Rev.

    Perturbative Tamm-Dancoff Renormalization

    Full text link
    A new two-step renormalization procedure is proposed. In the first step, the effects of high-energy states are considered in the conventional (Feynman) perturbation theory. In the second step, the coupling to many-body states is eliminated by a similarity transformation. The resultant effective Hamiltonian contains only interactions which do not change particle number. It is subject to numerical diagonalization. We apply the general procedure to a simple example for the purpose of illustration.Comment: 20 pages, RevTeX, 10 figure

    Nonperturbative renormalization group in a light-front three-dimensional real scalar model

    Full text link
    The three-dimensional real scalar model, in which the Z2Z_2 symmetry spontaneously breaks, is renormalized in a nonperturbative manner based on the Tamm-Dancoff truncation of the Fock space. A critical line is calculated by diagonalizing the Hamiltonian regularized with basis functions. The marginal (ϕ6\phi^6) coupling dependence of the critical line is weak. In the broken phase the canonical Hamiltonian is tachyonic, so the field is shifted as ϕ(x)φ(x)+v\phi(x)\to\varphi(x)+v. The shifted value vv is determined as a function of running mass and coupling so that the mass of the ground state vanishes.Comment: 23 pages, LaTeX, 6 Postscript figures, uses revTeX and epsbox.sty. A slight revision of statements made, some references added, typos correcte

    Defining the Force between Separated Sources on a Light Front

    Get PDF
    The Newtonian character of gauge theories on a light front requires that the longitudinal momentum P^+, which plays the role of Newtonian mass, be conserved. This requirement conflicts with the standard definition of the force between two sources in terms of the minimal energy of quantum gauge fields in the presence of a quark and anti-quark pinned to points separated by a distance R. We propose that, on a light front, the force be defined by minimizing the energy of gauge fields in the presence of a quark and an anti-quark pinned to lines (1-branes) oriented in the longitudinal direction singled out by the light front and separated by a transverse distance R. Such sources will have a limited 1+1 dimensional dynamics. We study this proposal for weak coupling gauge theories by showing how it leads to the Coulomb force law. For QCD we also show how asymptotic freedom emerges by evaluating the S-matrix through one loop for the scattering of a particle in the N_c representation of color SU(N_c) on a 1-brane by a particle in the \bar N_c representation of color on a parallel 1-brane separated from the first by a distance R<<1/Lambda_{QCD}. Potential applications to the problem of confinement on a light front are discussed.Comment: LaTeX, 15 pages, 12 figures; minor typos corrected; numerical correction in equation 3.

    Structure Preserving Parallel Algorithms for Solving the Bethe-Salpeter Eigenvalue Problem

    Full text link
    The Bethe-Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe-Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. We establish the equivalence between Bethe-Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe-Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm-Dancoff approximation are overestimated. In order to solve large scale problems of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms
    corecore