437 research outputs found

    Determining concentric and eccentric force–velocity profiles during squatting.

    Get PDF
    The force–velocity relationship of muscular contraction has been extensively studied. However, previous research has focussed either on isolated muscle or single-joint movements, whereas human movement consists of multi-joint movements (e.g. squatting). Therefore, the purpose of this study was to investigate the force–velocity relationship of isovelocity squatting. Fifteen male participants (24±2 years, 79.8±9.1 kg, 177.5±6 cm) performed isovelocity squats on a novel motorised isovelocity device (Kineo Training System) at three concentric (0.25, 0.5, and 0.75 m s−1) and three eccentric velocities (−0.25, −0.5, and −0.75 m s−1). Peak vertical ground reaction forces, that occurred during the isovelocity phase, were collected using dual force plates (2000 Hz) (Kistler, Switzerland). The group mean squat force–velocity profile conformed to the typical in vivo profile, with peak vertical ground reaction forces during eccentric squatting being 9.5 ± 19% greater than isometric (P = 0.037), and occurring between −0.5 and −0.75 m s−1. However, large inter-participant variability was identified (0.84–1.62 × isometric force), with some participants being unable to produce eccentric forces greater than isometric. Sub-group analyses could not identify differences between individuals who could/could not produce eccentric forces above isometric, although those who could not tended to be taller. These finding suggest that variability exists between participants in the ability to generate maximum eccentric forces during squatting, and the magnitude of eccentric increase above isometric cannot be predicted solely based on a concentric assessment. Therefore, an assessment of eccentric capabilities may be required prior to prescribing eccentric-specific resistance training

    Exotic Heavy Fermion State in the Filled Skutterudite PrFe4_4P12_{12} Uncovered by the de Haas-van Alphen Effect

    Full text link
    We report the de Haas-van Alphen (dHvA) experiment on the filled skutterudite PrFe4_4P12_{12} exhibiting apparent Kondo-like behaviors in the transport and thermal properties. We have found enormously enhanced cyclotron effective mass mc∗=81m0m^{\rm \ast}_{\rm c}=81 m_{\rm 0} in the high field phase (HFP), which indicates that PrFe4_4P12_{12} is the first Pr-compound in which really heavy mass has been unambiguously confirmed. Also in the low field non-magnetic ordered phase (LOP), we observed the dHvA branch with mc∗=10m0m^{\rm \ast}_{\rm c}=10 m_{0} that is quite heavy taking into account its small Fermi surface volume (0.15% of the Brillouin zone size). The insensitivity of mass in LOP against the magnetic field suggests that the quadrupolar interaction plays a main role both in the mass renormalization and the LOP formation.Comment: 5 pages, 5 figures, Phys. Rev. B (01 October 2002) in pres

    A general T-matrix approach applied to two-body and three-body problems in cold atomic gases

    Full text link
    We propose a systematic T-matrix approach to solve few-body problems with s-wave contact interactions in ultracold atomic gases. The problem is generally reduced to a matrix equation expanded by a set of orthogonal molecular states, describing external center-of-mass motions of pairs of interacting particles; while each matrix element is guaranteed to be finite by a proper renormalization for internal relative motions. This approach is able to incorporate various scattering problems and the calculations of related physical quantities in a single framework, and also provides a physically transparent way to understand the mechanism of resonance scattering. For applications, we study two-body effective scattering in 2D-3D mixed dimensions, where the resonance position and width are determined with high precision from only a few number of matrix elements. We also study three fermions in a (rotating) harmonic trap, where exotic scattering properties in terms of mass ratios and angular momenta are uniquely identified in the framework of T-matrix.Comment: 14 pages, 4 figure

    Wear and degradation on retrieved zirconia femoral heads

    Get PDF
    Zirconia femoral heads retrieved from patients after different implantation periods (up to 13 years) were analysed using vertical scanning interferometry, atomic force microscopy and Raman microspectroscopy. A range of topographical and compositional changes on the surface of the retrievals are reported in this work. The study revealed that changes in roughness are the result of a combination of factors, i.e. scratching, surface upheaval due to transformation to the monoclinic phase and grain pull-out. Clusters of transformed monoclinic grains were observed on heads implanted for more than 3 years. The phase composition of these clusters was confirmed by Raman microspectroscopy. Increased abrasive wear and a higher monoclinic phase content concentrated on the pole of the femoral heads, confirming that the tetragonal to monoclinic phase transformation was not only induced by the tetragonal phase metastability and environmental conditions but mechanical and tribological factors, also affected the transformation kinetics. Additionally, the head implanted for 13 years showed evidence of a self-polishing mechanism leading to a considerable smoothening of the surface. These observations provide an insight into the interrelated mechanisms underlying the wear and transformation process on zirconia ceramics during implantation

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    • 

    corecore