598 research outputs found

    Eigenvalue computations in the context of data-sparse approximations of integral operators

    Get PDF
    In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.This work was partially supported by the Spanish Ministerio de Ciencia e Innovacion under projects TIN2009-07519, TIN2012-32846 and AIC10-D-000600 and by Fundacao para a Ciencia e a Tecnologia - FCT under project FCT/MICINN proc 441.00.RomĂĄn MoltĂł, JE.; Vasconcelos, PB.; Nunes, AL. (2013). Eigenvalue computations in the context of data-sparse approximations of integral operators. Journal of Computational and Applied Mathematics. 237(1):171-181. doi:10.1016/j.cam.2012.07.021S171181237

    Carbohydrate carbon sources induce loss of flocculation of an ale-brewing yeast strain

    Get PDF
    Aims: To identify the nutrients that can trigger the loss of flocculation under growth conditions in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. Methods and Results: Flocculation was evaluated using the method of Soares, EX. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. Yeast growth with metabolizable carbon sources (glucose, fructose, galactose, maltose or sucrose) at 2% (w/v), induced the loss of flocculation in yeast that had previously been allowed to flocculate. The yeast remained flocculent when transferred to a medium containing the required nutrients for yeast growth and a sole nonmetabolizable carbon source (lactose). Transfer of flocculent yeast into a growth medium with ethanol (4% v/v), as the sole carbon source did not induce the loss of flocculation. Even the addition of glucose (2% w/v) or glucose and antimycin A (0.1 mg lˉÂč) to this culture did not bring about loss of flocculation. Cycloheximide addition (15 mglˉÂč) to glucose-growing cells stopped flocculation loss. Conclusions: Carbohydrates were the nutrients responsible for stimulating the loss of flocculation in flocculent yeast cells transferred to growing conditions. The glucose-induced loss of flocculation required de novo protein synthesis. Ethanol prevented glucose-induced loss of flocculation. This protective effect of ethanol was independent of the respiratory function of the yeast. Significance and Impact of the Study: This work contributes to the elucidation of the role of nutrients in the control of the flocculation cycle in NewFlo phenotype yeast strains.Instituto PolitĂ©cnico do Porto (IPP) - Fundo de Apoio Ă  Investigação - Project P24/96 , P24/97.Programa Plurianual de Unidades de I&D-CIEA/ ISEP

    Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress

    Get PDF
    Aims: To examine the effect of different stress conditions on the onset of flocculation in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. Methods and Results: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]; plasma membrane integrity was accessed using propidium iodide and the staining of the yeast cell wall was performed using calcofluor white M2R. Cells in exponential phase of growth were subjected to different stress conditions. The addition of 1%, 3% and 5% (v/v) ethanol, 1% and 3% (v/v) isopropanol or a brief heat shock (52ÂșC, 5 min), did not induce an early flocculation phenotype when compared with control cells. The addition of 10% (v/v) ethanol, a continuous mild heat-stress (37ÂșC) or an osmotic stress (0.5 or 1 mol l-1 of NaCl) did not induce a flocculent phenotype. Conclusions: Flocculation seems not to be induced as a response to different chemical (ethanol and isopropanol) and physical (heat and osmotic) stress conditions. Conversely, osmotic and ethanol [10% (v/v)] stress, as well as a continuous mild heat shock (37ÂșC), have a negative impact on the phenotype expression of flocculation. Significance and Impact of the Study: The findings reported here contribute to the elucidation of the control of yeast flocculation. This information might be useful to the brewing industry, as the time when the onset of flocculation occurs can determine the fermentation performance and the beer quality, as well as in other biotechnological industries where flocculation can be used as a cell separation process.ERASMUS; ISEP (Portugal)

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Weak magnetism and non-Fermi liquids near heavy-fermion critical points

    Full text link
    This paper is concerned with the weak-moment magnetism in heavy-fermion materials and its relation to the non-Fermi liquid physics observed near the transition to the Fermi liquid. We explore the hypothesis that the primary fluctuations responsible for the non-Fermi liquid physics are those associated with the destruction of the large Fermi surface of the Fermi liquid. Magnetism is suggested to be a low-energy instability of the resulting small Fermi surface state. A concrete realization of this picture is provided by a fractionalized Fermi liquid state which has a small Fermi surface of conduction electrons, but also has other exotic excitations with interactions described by a gauge theory in its deconfined phase. Of particular interest is a three-dimensional fractionalized Fermi liquid with a spinon Fermi surface and a U(1) gauge structure. A direct second-order transition from this state to the conventional Fermi liquid is possible and involves a jump in the electron Fermi surface volume. The critical point displays non-Fermi liquid behavior. A magnetic phase may develop from a spin density wave instability of the spinon Fermi surface. This exotic magnetic metal may have a weak ordered moment although the local moments do not participate in the Fermi surface. Experimental signatures of this phase and implications for heavy-fermion systems are discussed.Comment: 20 pages, 8 figures; (v2) includes expanded discussion and solution of quantum Boltzmann equatio

    A green-gray path to global water security and sustainable infrastructure

    Get PDF
    Sustainable development demands reliable water resources, yet traditional water management has broadly failed to avoid environmental degradation and contain infrastructure costs. We explore the global-scale feasibility of combining natural capital with engineering-based (green-gray) approaches to meet water security threats over the 21st century. Threats to water resource systems are projected to rise throughout this period, together with a significant expansion in engineering deployments and progressive loss of natural capital. In many parts of the world, strong path dependencies are projected to arise from the legacy of prior environmental degradation that constrains future water management to a heavy reliance on engineering-based approaches. Elsewhere, retaining existing stocks of natural capital creates opportunities to employ blended green-gray water infrastructure. By 2050, annual engineering expenditures are projected to triple to 2.3trillion,investedmainlyindevelopingeconomies.Incontrast,preservingnaturalcapitalforthreatsuppressionrepresentsapotential2.3 trillion, invested mainly in developing economies. In contrast, preserving natural capital for threat suppression represents a potential 3.0 trillion in avoided replacement costs by mid-century. Society pays a premium whenever these nature-based assets are lost, as the engineering costs necessary to achieve an equivalent level of threat management are, on average, twice as expensive. Countries projected to rapidly expand their engineering investments while losing natural capital will be most constrained in realizing green-gray water management. The situation is expected to be most restrictive across the developing world, where the economic, technical, and governance capacities to overcome such challenges remain limited. Our results demonstrate that policies that support blended green-gray approaches offer a pathway to future global water security but will require a strategic commitment to preserving natural capital. Absent such stewardship, the costs of water resource infrastructure and services will likely rise substantially and frustrate efforts to attain universal and sustainable water security

    Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    Get PDF
    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \hermes. The subleading-twist contribution for (\pi^-) mesons is found to be small

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore