5 research outputs found

    Measurement of the tt̄W and tt̄Z production cross sections in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√ = 8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−¹ collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt̄W and tt̄Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯Wtt¯W (tt̄Z) production. The measured cross sections are σtt̄W = 369 + 100−91 fb and σtt̄Z = 176 + 58−52 fb. The background-only hypothesis with neither tt̄W nor tt̄Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt̄W and tt̄Z processes

    Measurement of the W -> tau nu(tau) cross section in pp collisions at root s=7 TeV with the ATLAS experiment

    Get PDF
    The cross section for the production of W bosons with subsequent decay W -> tau nu(tau) is measured with the ATLAS detector at the LHC. The analysis is based on a data sample that was recorded in 2010 at a proton-proton center-of-mass energy of root s = 7 TeV and corresponds to an integrated luminosity of 34 pb(-1). The cross section is measured in a region of high detector acceptance and then extrapolated to the full phase space. The product of the total W production cross section and the W -> tau nu(tau) branching ratio is measured to be sigma(tot)(W -> tau nu tau) = 11.1 +/- 0.3 (stat) +/- 1.7 (syst) +/- 0.4 (lumi) nb. (C) 2011 CERN. Published by Elsevier B.V. All rights reserved

    Jet mass and substructure of inclusive jets in sqrt(s) = 7 TeV pp collisions with the ATLAS experiment

    Get PDF
    See paper for full list of authors - 30 pages plus author list (53 pages total), 17 figures, submitted to Journal of High Energy PhysicsRecent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb^-1 of pp collisions delivered by the LHC at sqrt(s) = 7 TeV. In a subsample of events with single pp collisions, measurementes corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, kt splitting scales and n-subjettiness variables are presented for anti-kt R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored
    corecore