6 research outputs found

    Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium

    Get PDF
    Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit

    Artemisone--a highly active antimalarial drug of the artemisinin class.

    No full text
    Artemisinin - the next generation: Efficacies of artemisone against the malaria parasite are substantially greater than those of the current artemisinin "gold standard", artesunate. Also, in contrast to most current artemisinins it displays low lipophilicity and negligible neuro- and cytotoxicity in in vitro and in vivo assays. Thus, the drug offers promise for use in artemisinin-based combination therapy. (Chemical Equation Presented). © 2006 Wiley-VCH Verlag GmbH & Co. KGaA

    Very high energy gamma-ray observation of the peculiar transient event Swift J1644+57 with the MAGIC telescopes and AGILE

    Get PDF
    Context. On March 28, 2011, the BAT instrument on board the Swift satellite detected a new transient event that in the very beginning was classified as a gamma ray burst (GRB). However, the unusual X-ray flaring activity observed from a few hours up to days after the onset of the event made a different nature seem to be more likely. The long-lasting activity in the X-ray band, followed by a delayed brightening of the source in infrared and radio activity, suggested that it is better interpreted as a tidal disruption event that triggered a dormant black hole in the nucleus of the host galaxy and generated an outflowing jet of relativistic matter. Aims. Detecting a very high energy emission component from such a peculiar object would be enable us to constrain the dynamic of the emission processes and the jet model by providing information on the Doppler factor of the relativistic ejecta. Methods. The MAGIC telescopes observed the peculiar source Swift J1644+57 during the flaring phase, searching for gamma-ray emission at very-high energy (VHE, E > 100 GeV), starting observations nearly 2.5 days after the trigger time. MAGIC collected a total of 28 h of data during 12 nights. The source was observed in wobble mode during dark time at a mean zenith angle of 35 degrees. Data were reduced using a new image-cleaning algorithm, the so-called sum-cleaning, which guarantees a better noise suppression and a lower energy threshold than the standard analysis procedure. Results. No clear evidence for emission above the energy threshold of 100 GeV was found. MAGIC observations permit one to constrain the emission from the source down to 100 GeV, which favors models that explain the observed lower energy variable emission. Data analysis of simultaneous observations from AGILE, Fermi and VERITAS also provide negative detection, which additionally constrain the self-Compton emission component

    Reconciling nature, people and policy in the mangrove social-ecological system through the adaptive cycle heuristic

    No full text

    Petroleum. Miscellaneous

    No full text
    corecore