54 research outputs found

    Left Frontal Hub Connectivity during Memory Performance Supports Reserve in Aging and Mild Cognitive Impairment

    Get PDF
    Reserve in aging and Alzheimer's disease (AD) is defined as maintaining cognition at a relatively high level in the presence of neurodegeneration, an ability often associated with higher education among other life factors. Recent evidence suggests that higher resting-state functional connectivity within the frontoparietal control network, specifically the left frontal cortex (LFC) hub, contributes to higher reserve. Following up these previous resting-state fMRI findings, we probed memory-task related functional connectivity of the LFC hub as a neural substrate of reserve. In elderly controls (CN, n = 37) and patients with mild cognitive impairment (MCI, n = 17), we assessed global connectivity of the LFC hub during successful face-name association learning, using generalized psychophysiological interaction analyses. Reserve was quantified as residualized memory performance, accounted for gender and proxies of neurodegeneration (age, hippocampus atrophy, and APOE genotype). We found that greater education was associated with higher LFC-connectivity in both CN and MCI during successful memory. Furthermore, higher LFC-connectivity predicted higher residualized memory (i.e., reserve). These results suggest that higher LFC-connectivity contributes to reserve in both healthy and pathological aging

    The bounds of education in the human brain connectome

    Get PDF
    Inter-individual heterogeneity is evident in aging; education level is known to contribute for this heterogeneity. Using a cross-sectional study design and network inference applied to resting-state fMRI data, we show that aging was associated with decreased functional connectivity in a large cortical network. On the other hand, education level, as measured by years of formal education, produced an opposite effect on the long-term. These results demonstrate the increased brain efficiency in individuals with higher education level that may mitigate the impact of age on brain functional connectivity.This work was funded by the European Commission (FP7): “SwitchBox” (Contract HEALTH-F2-2010-259772) and co-financed by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). José M. Soares, Paulo Marques, and Nadine C. Santos are supported by fellowships of the project “SwitchBox”; Ricardo Magalhães is supported by a fellowship from the project FCT ANR/NEU-OSD/0258/2012 funded by FCT/MEC (www.fct.pt) and by ON.2 – ONOVONORTE – North Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/2013, through FEDER

    The BDNF Val66Met polymorphism moderates the relationship between cognitive reserve and executive function

    Get PDF
    The concept of cognitive reserve (CR) has been proposed to account for observed discrepancies between pathology and its clinical manifestation due to underlying differences in brain structure and function. In 433 healthy older adults participating in the Tasmanian Healthy Brain Project, we investigated whether common polymorphic variations in apolipoprotein E (APOE) or brain-derived neurotrophic factor (BDNF) influenced the association between CR contributors and cognitive function in older adults. We show that BDNF Val66Met moderates the association between CR and executive function. CR accounted for 8.5% of the variance in executive function in BDNF Val homozygotes, but CR was a nonsignificant predictor in BDNF Met carriers. APOE polymorphisms were not linked to the influence of CR on cognitive function. This result implicates BDNF in having an important role in capacity for building or accessing CR

    Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve

    Get PDF
    Brain atrophy measured by magnetic resonance structural imaging has been proposed as a surrogate marker for the early diagnosis of Alzheimer's disease. Studies on large samples are still required to determine its practical interest at the individual level, especially with regards to the capacity of anatomical magnetic resonance imaging to disentangle the confounding role of the cognitive reserve in the early diagnosis of Alzheimer's disease. One hundred and thirty healthy controls, 122 subjects with mild cognitive impairment of the amnestic type and 130 Alzheimer's disease patients were included from the ADNI database and followed up for 24 months. After 24 months, 72 amnestic mild cognitive impairment had converted to Alzheimer's disease (referred to as progressive mild cognitive impairment, as opposed to stable mild cognitive impairment). For each subject, cortical thickness was measured on the baseline magnetic resonance imaging volume. The resulting cortical thickness map was parcellated into 22 regions and a normalized thickness index was computed using the subset of regions (right medial temporal, left lateral temporal, right posterior cingulate) that optimally distinguished stable mild cognitive impairment from progressive mild cognitive impairment. We tested the ability of baseline normalized thickness index to predict evolution from amnestic mild cognitive impairment to Alzheimer's disease and compared it to the predictive values of the main cognitive scores at baseline. In addition, we studied the relationship between the normalized thickness index, the education level and the timeline of conversion to Alzheimer's disease. Normalized thickness index at baseline differed significantly among all the four diagnosis groups (P < 0.001) and correctly distinguished Alzheimer's disease patients from healthy controls with an 85% cross-validated accuracy. Normalized thickness index also correctly predicted evolution to Alzheimer's disease for 76% of amnestic mild cognitive impairment subjects after cross-validation, thus showing an advantage over cognitive scores (range 63–72%). Moreover, progressive mild cognitive impairment subjects, who converted later than 1 year after baseline, showed a significantly higher education level than those who converted earlier than 1 year after baseline. Using a normalized thickness index-based criterion may help with early diagnosis of Alzheimer's disease at the individual level, especially for highly educated subjects, up to 24 months before clinical criteria for Alzheimer's disease diagnosis are met

    Midlife managerial experience is linked to late life hippocampal morphology and function

    Get PDF
    An active cognitive lifestyle has been suggested to have a protective role in the long-term maintenance of cognition. Amongst healthy older adults, more managerial or supervisory experiences in midlife are linked to a slower hippocampal atrophy rate in late life. Yet whether similar links exist in individuals with Mild Cognitive Impairment (MCI) is not known, nor whether these differences have any functional implications. 68 volunteers from the Sydney SMART Trial, diagnosed with non-amnestic MCI, were divided into high and low managerial experience (HME/LME) during their working life. All participants underwent neuropsychological testing, structural and resting-state functional MRI. Group comparisons were performed on hippocampal volume, morphology, hippocampal seed-based functional connectivity, memory and executive function and self-ratings of memory proficiency. HME was linked to better memory function (p = 0.024), mediated by larger hippocampal volume (p = 0.025). More specifically, deformation analysis found HME had relatively more volume in the CA1 sub-region of the hippocampus (p  <  0.05). Paradoxically, this group rated their memory proficiency worse (p = 0.004), a result correlated with diminished functional connectivity between the right hippocampus and right prefrontal cortex (p  <  0.001). Finally, hierarchical regression modelling substantiated this double dissociation

    Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: a meta-analysis (prior to 2015)

    Get PDF
    Brain/biological (BR) and cognitive/neural reserve (CR) have increasingly been used to explain some of the variability that occurs as a consequence of normal ageing and neurological injuries or disease. However, research evaluating the impact of reserve on outcomes after adult traumatic brain injury (TBI) has yet to be quantitatively reviewed. This meta-analysis consolidated data from 90 studies (published prior to 2015) that either examined the relationship between measures of BR (genetics, age, sex) or CR (education, premorbid IQ) and outcomes after TBI or compared the outcomes of groups with high and low reserve. The evidence for genetic sources of reserve was limited and often contrary to prediction. APOE ∈4 status has been studied most, but did not have a consistent or sizeable impact on outcomes. The majority of studies found that younger age was associated with better outcomes, however most failed to adjust for normal age-related changes in cognitive performance that are independent of a TBI. This finding was reversed (older adults had better outcomes) in the small number of studies that provided age-adjusted scores; although it remains unclear whether differences in the cause and severity of injuries that are sustained by younger and older adults contributed to this finding. Despite being more likely to sustain a TBI, males have comparable outcomes to females. Overall, as is the case in the general population, higher levels of education and pre-morbid IQ are both associated with better outcomes.Jane L. Mathias, Patricia Wheato

    Multi-echo fMRI, resting-state connectivity, and high psychometric schizotypy

    Get PDF
    Disrupted striatal functional connectivity is proposed to play a critical role in the development of psychotic symptoms. Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies typically reported disrupted striatal connectivity in patients with psychosis and in individuals at clinical and genetic high risk of the disorder relative to healthy controls. This has not been widely studied in healthy individuals with subclinical psychotic-like experiences (schizotypy). Here we applied the emerging technology of multi-echo rs-fMRI to examine corticostriatal connectivity in this group, which is thought to drastically maximize physiological noise removal and increase BOLD contrast-to-noise ratio. Multi-echo rs-fMRI data (echo times, 12, 28, 44, 60 ms) were acquired from healthy individuals with low (LS, n = 20) and high (HS, n = 19) positive schizotypy as determined with the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE). After preprocessing to ensure optimal contrast and removal of non-BOLD signal components, whole-brain functional connectivity from six striatal seeds was compared between the HS and LS groups. Effects were considered significant at clusterlevel p < .05 family-wise error correction. Compared to LS, HS subjects showed lower rs-fMRI connectivity between ventromedial prefrontal regions and ventral striatal regions. Lower connectivity was also observed between the dorsal putamen and the hippocampus, occipital regions, as well as the cerebellum. These results demonstrate that subclinical positive psychotic-like experiences in healthy individuals are associated with striatal hypoconnectivity as detected using multi-echo rs-fMRI. Further application of this approach may aid in characterizing functional connectivity abnormalities across the extended psychosis phenotype.Brain & Behavior Research Foundation NARSAD Young Investigator Gran

    Polimorfismo T102C del receptor 5HT2A y rendimiento cognitivo en la alteración cognitiva leve

    No full text
    La Alteración Cognitiva Leve es un estado de transición entre el envejecimiento normal y la enfermedad de Alzheimer y es por ello una condición de riesgo para la demencia. La serotonina y sus receptores tienen un papel importante en los procesos de aprendizaje y memoria. El receptor 5HT2A está localizado predominantemente en áreas frontales e hipocampales. En este estudio hemos valorado la influencia del genotipo del polimorfismo T102C del gen 5HT2A en el rendimiento cognitivo de una muestra de 59 sujetos con Alteración Cognitiva Leve. Los sujetos heterocigotos (T102/C102) para este polimorfismo puntuaban significativamente menos en el Mini-Mental, pruebas de memoria visual y verbal y en funciones premotoras

    Self-reported sleep relates to microstructural hippocampal decline in beta-amyloid positive Adults beyond genetic risk

    No full text
    Study Objectives: A critical role linking sleep with memory decay and beta-amyloid (A beta) accumulation, two markers of Alzheimer's disease (AD) pathology, may be played by hippocampal integrity. We tested the hypotheses that worse self-reported sleep relates to decline in memory and intra-hippocampal microstructure, including in the presence of A beta. Methods: Two-hundred and forty-three cognitively healthy participants, aged 19-81 years, completed the Pittsburgh Sleep Quality Index once, and two diffusion tensor imaging sessions, on average 3 years apart, allowing measures of decline in intra-hippocampal microstructure as indexed by increased mean diffusivity. We measured memory decay at each imaging session using verbal delayed recall. One session of positron emission tomography, in 108 participants above 44 years of age, yielded 23 A beta positive. Genotyping enabled control for APOE epsilon 4 status, and polygenic scores for sleep and AD, respectively. Results: Worse global sleep quality and sleep efficiency related to more rapid reduction of hippocampal microstructure over time. Focusing on efficiency (the percentage of time in bed at night spent asleep), the relation was stronger in presence of A beta accumulation, and hippocampal integrity decline mediated the relation with memory decay. The results were not explained by genetic risk for sleep efficiency or AD. Conclusions: Worse sleep efficiency related to decline in hippocampal microstructure, especially in the presence of A beta accumulation, and A beta might link poor sleep and memory decay. As genetic risk did not account for the associations, poor sleep efficiency might constitute a risk marker for AD, although the driving causal mechanisms remain unknown
    corecore