19 research outputs found

    Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

    Get PDF
    The production of D-+/-- and D-0-mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb(-1). The measurements cover the kinematic range 5 < Q(2) < 1000 GeV2, 0.02 < y < 0.7, 1.5 < p(T)(D) < 15 GeV and |eta(D)| < 1.6. Combinatorial background to the D-meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD, which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F-2(c (c) over bar), to the proton structure function, F-2

    Production of Excited Charm and Charm-Strange Mesons at HERA

    No full text
    The production of excited charm, D 1(2420)0 and D 2 * (2460)0, and charm-strange, D s1(2536)±, mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb -1. Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D 2 * (2460)0 and D s1(2536) ± branching fractions. A search for the radially excited charm meson, D *(2640)±, was also performed. The results are compared with those measured previously and with theoretical expectations

    Search for supersymmetry in pp collisions at in events with a single lepton, large jet multiplicity, and multiple b jets

    No full text
    Results are reported from a search for supersymmetry in pp collisions at a center-of-mass energy of 8 TeV, based on events with a single isolated lepton (electron or muon) and multiple jets, at least two of which are identified as b jets. The data sample corresponds to an integrated luminosity of 19.3 fb(-1) recorded by the CMS experiment at the LHC in 2012. The search is motivated by supersymmetric models that involve strong-production processes and cascade decays of new particles. The resulting final states contain multiple jets as well as missing transverse momentum from weakly interacting particles. The event yields, observed across several kinematic regions, are consistent with the expectations from standard model processes. The results are interpreted in the context of simplified supersymmetric scenarios with pair production of gluinos, where each gluino decays to a top quark-antiquark pair and the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than 1.26 TeV are excluded for low neutralino masses

    Searches for supersymmetry based on events with b jets and four W bosons in pp collisions at 8 TeV

    No full text
    Five mutually exclusive searches for supersymmetry are presented based on events in which b jets and four W bosons are produced in proton-proton collisions at root s = 8TeV. The data, corresponding to an integrated luminosity of 19.5 fb(-1), were collected with the CMS experiment at the CERN LHC in 2012. The five studies differ in the leptonic signature from the W boson decays, and correspond to all-hadronic, single-lepton, opposite-sign dilepton, same-sign dilepton, and >= 3 lepton final states. The results of the five studies are combined to yield 95% confidence level limits for the gluino and bottom-squark masses in the context of gluino and bottom-squark pair production, respectively. In the limit when the lightest supersymmetric particle is light, gluino and bottom squark masses are excluded below 1280 and 570 GeV, respectively

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For t (t) over bar events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of vertical bar eta vertical bar < 0.9 and 85% for 0.9 < vertical bar eta vertical bar < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at vertical bar eta vertical bar < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10 m m and 30 mu m in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 mu m in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Search for excited quarks in the gamma plus jet final state in proton-proton collisions at root s=8 TeV

    No full text
    A search for excited quarks decaying into the gamma + jet final state is presented. The analysis is based on data corresponding to an integrated luminosity of 19.7 fb(-1) collected by the CMS experiment in proton-proton collisions at root s = 8 TeV at the LHC. Events with photons and jets with high transverse momenta are selected and the gamma + jet invariant mass distribution is studied to search for a resonance peak. The 95% confidence level upper limits on the product of cross section and branching fraction are evaluated as a function of the excited quark mass. Limits on excited quarks are presented as a function of their mass and coupling strength; masses below 3.5 TeV are excluded at 95% confidence level for unit couplings to their standard model partners

    Measurement of the ratio B(t -> Wb)/B(t -> Wq) in pp collisions at root s=8 TeV

    No full text
    The ratio of the top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the t (t) over bar dilepton final state with proton-proton collision data at root s = 8 TeV from an integrated luminosity of 19.7 fb(-1), collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 +/- 0.003 (stat.) +/- 0.032 (syst.) is measured, in a good agreement with current precision measurements in electroweak and flavour sectors. A lower limit R > 0.955 at the 95% confidence level is obtained after requiring R 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, Gamma(t) = 1.36 +/- 0.02 (stat.)(-0.11)(+0.14) (syst.) GeV

    Alignment of the CMS Muon System with Cosmic-Ray and Beam-Halo Muons

    No full text
    Abstract The CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions of endcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements. * See Appendix A for the list of collaboration members arXiv:0911.4022v2 [physics.ins-det] 8 Feb 2010 FERMILAB-PUB-10-163-CMS Introduction The primary goal of the Compact Muon Solenoid (CMS) experiment [1] is to explore particle physics at the TeV energy scale exploiting the proton-proton collisions delivered by the Large Hadron Collider (LHC) The muon system consists of hundreds of independent tracking chambers mounted within the CMS magnetic field return yoke. Three technologies are employed: Drift Tube (DT) chambers on the five modular wheels of the barrel section, Cathode Strip Chambers (CSC) on the six endcap disks (illustrated in Figs. 1 and 2) and Resistive Plate Chambers (RPC) throughout. The DTs and CSCs are sufficiently precise to contribute to the momentum resolution of highmomentum muons (several hundred GeV/c) assuming that these chambers are well-aligned relative to the CMS tracker, a one-meter radius silicon strip and pixel detector. Between the tracker and the muon system are electromagnetic and hadronic calorimeters (ECAL and HCAL, respectively) for particle identification and energy measurement, as well as the solenoid coil for producing an operating magnetic field strength of 3.8 T in which to measure charged-particle momenta (all shown in The CMS collaboration is developing multiple techniques to align the DT and CSC chambers and their internal layers. Photogrammetry and in-situ measurement devices [3] provide realtime monitoring of potential chamber movements on short timescales and measurements of degrees of freedom to which tracks are only weakly sensitive. Track-based alignment, the subject of this paper, optimizes component positions for a given set of tracks, directly relating the active elements of the detectors traversed by the charged particles in a shared coordinate frame. Methods using tracks are employed both to align nearby components relative to one another and to align all muon chambers relative to the tracker. A challenge to track-based alignment in the CMS muon system is the presence of large quantities of material between the chambers. As a central design feature of the detector, 20-60 cm layers of steel are sandwiched between the chambers to concentrate the magnetic field and absorb beam-produced hadrons. Consequently, uncertainties in track trajectories become significant as muons propagate through the material, making it necessary to develop alignment procedures that are insensitive to scattering, even though typical deviations in the muon trajectories (3-8 mm) are large compared to the intrinsic spatial resolution (100-300 µm). Two types of approaches are presented in this paper: the relative alignment of nearby structures, which avoids extrapolation of tracks through material but does not relate distant coordinate frames to each other, and the alignment using tracks reconstructed in the tracker, which allows for a more sophisticated treatment of propagation effects by simplifying the interdependence of alignment parameters. This paper begins with a brief overview of the geometry of the muon system and conventions to be used thereafter (Section 2), followed by presentations of three alignment procedures: (a) internal alignment of layers within DT chambers using a combination of locally fitted track segments and survey measurements (Section 3); (b) alignment of groups of overlapping CSC chambers relative to one another, using only (c) alignment of each chamber relative to the tracker, using the tracks from the tracker, propagated to the muon system with a detailed map of the magnetic field and material distribution of CMS (Section 5). Procedure (c), above, completes the alignment, relating all local coordinate frames to a shared frame. Its performance is greatly improved by supplying internally aligned chambers from procedure (a), such that only rigid-body transformations of whole chambers need to be considered. Procedures (b) and (c) both align CSC chambers relative to one another, but in different ways: (b) does not need many tracks, only about 1000 per chamber, to achieve high precision, and (c) additionally links the chambers to the tracker. With the first LHC collisions, groups of CSCs will be interaligned using (b) and these rigidbody groups will be aligned relative to the tracker with (c). As more data become available, comparisons of results from (b) and (c) yield highly sensitive tests of systematic errors in (c). Although the ideal tracks for these procedures are muons from LHC collisions, this paper focuses on application of the procedures using currently available data, namely cosmic rays (a and c) and beam-halo muons from circulating LHC beam tests in September 2008 (b). In particular, (c) requires a magnetic field to select high-quality, high-momentum muons and concurrent operation of the tracker and muon systems. The CMS Collaboration conducted a monthlong data-taking exercise known as the Cosmic Run At Four Tesla (CRAFT) during OctoberNovember 2008, with the goal of commissioning the experiment for extended operation The formalism and results of each procedure are presented together. Details of the data transfer and the computing model which were used to implement these procedures are described in Ref. Geometry of the Muon System and Definitions Muon chambers are independent, modular track detectors, each containing 6-12 measurement layers, sufficient to determine the position and direction of a passing muon from the intersections of its trajectory with the layer planes (&quot;hits&quot;). The DT layers are oriented nearly perpendicular to lines radially projected from the beamline, and CSC layers are perpendicular to lines parallel with the beamline. Hits are initially expressed in a local coordinate frame (x, y, z) defined by the layers: z = 0 is the plane of the layer and x is the more precisely measured (or the only measured) of the two plane coordinates. On CSC layers, the most precise measurement is given by cathode strips, which fan radially from the beamline A semi-local coordinate system for the entire chamber is defined with x, y, and z axes nominally parallel to the layers&apos; axes, but with a single origin. Within this common frame, the positions of hits from different layers can be related to each other and combined by a linear fit into segments with position (x,ȳ) and direction ( dx dz , dy dz ). The nominal x direction of every chamber is perpendicular to the beamline and radial projections from the beamline

    Measurement of the production cross section for a W boson and two b jets in pp collisions at root s=7 TeV

    No full text
    The production cross section for a Wboson and two b jets is measured using proton-proton collisions at v root s = 7 TeV in a data sample collected with the CMS experiment at the LHC corresponding to an integrated luminosity of 5.0 fb(-1). The W + bbevents are selected in the W..decay mode by requiring a muon with transverse momentum pT> 25GeVand pseudorapidity |eta| 25GeVand |eta| < 2.4. The measured W + bbproduction cross section in the fiducial region, calculated at the level of final-state particles, is s(pp. W + bb) xB(W..) = 0.53 +/- 0.05 (stat.) +/- 0.09 (syst.) +/- 0.06 (theo.) 0.01 (lum.) pb, in agreement with the standard model prediction. In addition, kinematic distributions of the W + bbsystem are in agreement with the predictions of a simulation usingMadGraphandpythia

    Koulutusluokitus : Koulutuskoodimuutokset vuonna 1989, Liite 3

    Get PDF
    A measurement of inclusive ZZ production cross section and constraints on anomalous triple gauge couplings in proton-proton collisions at s\sqrt{s} = 8 TeV are presented. A data sample, corresponding to an integrated luminosity of 19.6 inverse-femtobarns was collected with the CMS experiment at the LHC. The measurements are performed in the leptonic decay modes ZZllllZZ \to lll'l', where l=e,μl = e, \mu and l=e,μ,τl' = e, \mu, \tau. The measured total cross section, σ(ppZZ)=7.7±0.5(stat.)0.4+0.5(syst.)±0.4(theo.)±0.2(lum.)pb\sigma (pp \to ZZ) = 7.7 \pm 0.5 (stat.)^{+0.5}_{-0.4} (syst.) \pm 0.4 (theo.) \pm 0.2 (lum.) pb for both Z bosons produced in the mass range mZm_Z within 60 and 120 GeV, is consistent with standard model predictions. Differential cross sections are measured and well described by the theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZγ\gamma couplings at the 95% confidence level: f4Zf_4^Z in (-0.004,+0.004), f5Zf_5^Z in (-0.005,+0.005), f4γf_4^\gamma in (-0.004,+0.004), and f5γf_5^\gamma in (-0.005,+0.005)
    corecore