94 research outputs found

    Patient and provider‐level barriers to hepatitis C screening and linkage to care: A mixed‐methods evaluation

    Full text link
    Achieving practice change can be challenging when guidelines shift from a selective risk‐based strategy to a broader population health strategy, as occurred for hepatitis C (HCV) screening (2012‐2013). We aimed to evaluate patient and provider barriers that contributed to suboptimal HCV screening and linkage‐to‐care rates after implementation of an intervention to improve HCV screening and linkage‐to‐care processes in a large, public integrated healthcare system following the guidelines change. As part of a mixed‐methods study, we collected data through patient surveys (n = 159), focus groups (n = 9) and structured observation of providers and staff (n = 9). We used these findings to then inform domains for the second phase, which consisted of semi‐structured interviews with patients across the screening‐treatment continuum (n = 24) and providers and staff at primary care and hepatology clinics (n = 21). We transcribed and thematically analysed interviews using an integrated inductive and deductive framework. We identified lack of clarity about treatment cost, treatment complications and likelihood of cure as ongoing patient‐level barriers to screening and linkage to care. Provider‐level barriers included scepticism about establishing HCV screening as a quality metric given competing clinical priorities, particularly for patients with multiple comorbidities. However, most felt positively about adding HCV as a quality metric to enhance HCV screening and linkage to care. Provider engagement yielded suggestions for process improvements that resulted in increased stakeholder buy‐in and real‐time enhancements to the HCV screening process intervention. Systematic data collection at baseline and during practice change implementation may facilitate adoption and adaptation to improve HCV screening guideline implementation. Findings identified several key opportunities and lessons to enhance the impact of practice change interventions to improve HCV screening and treatment delivery.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155892/1/jvh13278.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155892/2/jvh13278_am.pd

    Addressing cancer survivors\u27 cardiovascular health using the Automated Heart Health Assessment (AH-HA) EHR tool: Initial protocol and modifications to address COVID-19 challenges

    Get PDF
    BACKGROUND: The purpose of this paper is to describe the Automated Heart-Health Assessment (AH-HA) study protocol, which demonstrates an agile approach to cancer care delivery research. This study aims to assess the effect of a clinical decision support tool for cancer survivors on cardiovascular health (CVH) discussions, referrals, completed visits with primary care providers and cardiologists, and control of modifiable CVH factors and behaviors. The COVID-19 pandemic has caused widespread disruption to clinical trial accrual and operations. Studies conducted with potentially vulnerable populations, including cancer survivors, must shift towards virtual consent, data collection, and study visits to reduce risk for participants and study staff. Studies examining cancer care delivery innovations may also need to accommodate the increased use of virtual visits. METHODS/DESIGN: This group-randomized, mixed methods study will recruit 600 cancer survivors from 12 National Cancer Institute Community Oncology Research Program (NCORP) practices. Survivors at intervention sites will use the AH-HA tool with their oncology provider; survivors at usual care sites will complete routine survivorship visits. Outcomes will be measured immediately after the study visit, with follow-up at 6 and 12 months. The study was amended during the COVID-19 pandemic to allow for virtual consent, data collection, and intervention options, with the goal of minimizing participant-staff in-person contact and accommodating virtual survivorship visits. CONCLUSIONS: Changes to the study protocol and procedures allow important cancer care delivery research to continue safely during the COVID-19 pandemic and give sites and survivors flexibility to conduct study activities in-person or remotely

    What is a good medical decision? A research agenda guided by perspectives from multiple stakeholders

    Get PDF
    Informed and shared decision making are critical aspects of patient-centered care, which has contributed to an emphasis on decision support interventions to promote good medical decision making. However, researchers and healthcare providers have not reached a consensus on what defines a good decision, nor how to evaluate it. This position paper, informed by conference sessions featuring diverse stakeholders held at the 2015 Society of Behavioral Medicine and Society for Medical Decision Making annual meetings, describes key concepts that influence the decision making process itself and that may change what it means to make a good decision: interpersonal factors, structural constraints, affective influences, and values clarification methods. This paper also proposes specific research questions within each of these priority areas, with the goal of moving medical decision making research to a more comprehensive definition of a good medical decision, and enhancing the ability to measure and improve the decision making process

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jÀsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (ÎČ = 16.1, CI(ÎČ) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (ÎČ = 4.86,CI(ÎČ) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest

    Gene expression imputation across multiple brain regions provides insights into schizophrenia risk

    Get PDF
    Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    • 

    corecore