183 research outputs found
Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary
We conducted a statistical study to characterize the nonlinear response of the East Asian summer monsoon (EASM) to its potential forcing factors over the last 260 ka on orbital timescales. We find that both variation in solar insolation and global ice volume were responsible for the nonlinear forcing of orbital-scale monsoonal variations, accounting for similar to 80% of the total variance. Specifically, EASM records with dominated precession variance exhibit a more sensitive response to changes in solar insolation during intervals of enhanced monsoon strength, but are less sensitive during intervals of reduced monsoon strength. In the case of global ice volume with 100-ka variance, this difference is not one of sensitivity but rather a difference in baseline conditions, such as the relative areas of land and sea which affected the land-sea thermal gradient. We therefore suggest that EASM records with dominated precession variance recorded the signal of a shift in the location of the Inter-tropical Convergence Zone, and the associated changes in the incidence of torrential rainfall; while for proxies with dominated 100-ka variance, it recorded changes in the land-sea thermal gradient via its effects on non-torrential precipitation
Interacting topological magnons in a checkerboard ferromagnet
This work is devoted to studying the magnon-magnon interaction effect in a
two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya
interaction. By means of the first-order Green function formalism, the
influence of magnon-magnon interaction on the magnon band topology is analyzed.
In order to verify that the gap-closing phenomenon is a signature for the
topological phase transitions of the checkerboard ferromagnet, we display that
the Chern numbers of renormalized magnon bands are distinct above and below the
critical temperature. Our results show that the checkerboard ferromagnet
possesses two topological phases and its topological phase can be controlled
either by the temperature or applied magnetic field due to magnon-magnon
interactions. Interestingly, we find that the topological phase transition
occurs twice with the increase of the temperature, which is different from the
result of the honeycomb ferromagnet.Comment: arXiv admin note: text overlap with arXiv:2306.0250
Photoinduced topological phase transitions in Kitaev-Heisenberg honeycomb ferromagnets with the Dzyaloshinskii-Moriya interaction
We theoretically study topological properties of Floquet magnon in a
laser-irradiated Kitaev-Heisenberg honeycomb ferromagnet with the
Dzyaloshinskii-Moriya interaction by means of the Floquet-Bloch theory. It is
found that the Kitaev-Heisenberg ferromagnet can reveal two topological phases
with different Chern numbers when it is irradiated by a circular-polarized
light laser. Our results show that the topological phase of the system can be
switched from one topological phase to another one via varying the light
intensity. The intrinsic DMI plays a crucial role in the occurrence of
photoinduced topological phase transition. It is shown that the sign reversal
of the thermal hall conductivity is an important indicator on photoinduced
topological phase transitions in the Kitaev-Heisenberg honeycomb ferromagnet
Rainfall variations in central Indo-Pacific over the past 2,700 y
Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niño-like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability
Obliquity pacing of the western Pacific Intertropical Convergence Zone over the past 282,000 years
The Intertropical Convergence Zone (ITCZ) encompasses the heaviest rain belt on the Earth. Few direct long-term records, especially in the Pacific, limit our understanding of long-term natural variability for predicting future ITCZ migration. Here we present a tropical precipitation record from the Southern Hemisphere covering the past 282,000 years, inferred from a marine sedimentary sequence collected off the eastern coast of Papua New Guinea. Unlike the precession paradigm expressed in its East Asian counterpart, our record shows that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. The obliquity forcing could be primarily delivered by a cross-hemispherical thermal/pressure contrast, resulting from the asymmetric continental configuration between Asia and Australia in a coupled East Asian-Australian circulation system. Our finding suggests that the obliquity forcing may play a more important role in global hydroclimate cycles than previously thought
Roadmap on perovskite light-emitting diodes
In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to over 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community’s perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization
Roadmap on Perovskite Light-Emitting Diodes
In recent years, the field of metal-halide perovskite emitters has rapidly
emerged as a new community in solid-state lighting. Their exceptional
optoelectronic properties have contributed to the rapid rise in external
quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from
<1% (in 2014) to approaching 30% (in 2023) across a wide range of wavelengths.
However, several challenges still hinder their commercialization, including the
relatively low EQEs of blue/white devices, limited EQEs in large-area devices,
poor device stability, as well as the toxicity of the easily accessible lead
components and the solvents used in the synthesis and processing of PeLEDs.
This roadmap addresses the current and future challenges in PeLEDs across
fundamental and applied research areas, by sharing the community's
perspectives. This work will provide the field with practical guidelines to
advance PeLED development and facilitate more rapid commercialization.Comment: 103 pages, 29 figures. This is the version of the article before peer
review or editing, as submitted by an author to Journal of Physics:
Photonics. IOP Publishing Ltd is not responsible for any errors or omissions
in this version of the manuscript or any version derived from i
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
- …