336 research outputs found

    The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey

    Full text link
    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and accepted by AJ. Provides background for the instrument responsible for SDSS and BOSS spectra. 4th in a series of survey technical papers released in Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral Classification), and arXiv:1208.0022 (BOSS Overview

    Very Low-Mass Stellar and Substellar Companions to Solar-Like Stars from MARVELS I: A Low Mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79-day Orbit

    Get PDF
    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical amongst solar-like (Teff ~< 6000 K) binary systems. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged (~<5 Gyr) solar-like star having a mass of 1.07 +/- 0.08 MSun and radius of 0.99 +/- 0.18 RSun. We analyze 32 radial velocity measurements from the SDSS-III MARVELS survey as well as 6 supporting radial velocity measurements from the SARG spectrograph on the 3.6m TNG telescope obtained over a period of ~2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 +/- 0.012 days, an eccentricity of 0.1095 +/- 0.0023, and a semi-amplitude of 4199 +/- 11 m/s. We determine the minimum companion mass (if sin i = 1) to be 97.7 +/- 5.8 MJup. The system's companion to host star mass ratio, >0.087 +/- 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (Teff ~< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be co-moving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.Comment: 22 pages; accepted in A

    Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Fibroblast foci (FF) are considered a relevant morphologic marker of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), and are recognised as sites where fibrotic responses are initiated and/or perpetuated in this severe disease. Despite their relevance, the cellular and molecular mechanisms responsible for the formation of FF and their role in tissue remodelling are poorly defined. In previous studies we have provided evidence of abnormal activation of the wnt-signaling-pathway in IPF/UIP that is centred on FF and the overlying epithelium. This important morphogenetic pathway is able to trigger epithelial-mesenchymal-transition (EMT), a mechanism involved in developmental and metastatic processes, which is also potentially involved in pulmonary fibrosis. METHODS: Since EMT is characterised by enhancement of migratory potential of cells, we investigated the molecular profile of FF in 30 biopsies of IPF/UIP and a variety of control samples, focussing on the immunohistochemical expression of three molecules involved in cell motility and invasiveness, namely laminin-5-γ2-chain, fascin, and heat-shock-protein-27. RESULTS: We provide evidence that in UIP these three molecules are abnormally expressed in discrete clusters of bronchiolar basal cells precisely localised in FF. These cellular clusters expressed laminin-5-γ2-chain and heat-shock-protein-27 at very high levels, forming characteristic three-layered lesions defined as "sandwich-foci" (SW-FF). Upon quantitative analysis SW-FF were present in 28/30 UIP samples, representing more than 50% of recognisable FF in 21/30, but were exceedingly rare in a wide variety of lung pathologies examined as controls. In UIP, SW-FF were often observed in areas of microscopic honeycombing, and were also found at the interface between normal lung tissue and areas of dense scarring. CONCLUSION: These molecular abnormalities strongly suggest that SW-FF represent the leading edge of pulmonary remodelling, where abnormal migration and re-epithelialisation take place, and that abnormal proliferation and migration of bronchiolar basal cells have a major role in the remodelling process characterising IPF/UIP. Further investigations will assess their possible use as reliable markers for better defining the UIP-pattern in difficult cases

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    Acute upper airway failure and mediastinal emphysema following a wire-guided percutaneous cricothyrotomy in a patient with severe maxillofacial trauma

    Get PDF
    Contains fulltext : 69538.pdf (publisher's version ) (Open Access)BACKGROUND: In the presence of severe maxillofacial trauma, management of the airway is important because this condition poses a significant threat to airway patency. That securing the airway is not always straightforward is described and illustrated in this paper. CASE: We present the case of a 23-year-old patient who sustained severe maxillofacial injury for which airway control was necessary. A wire-guided percutaneous dilation cricothyrotomy was performed, which was most probably the cause of an acute loss of airway patency. The literature regarding the role of percutaneous techniques in an elective and emergency setting is reviewed
    corecore