28 research outputs found

    A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis

    Get PDF
    Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in theWestern clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region.Wealso foundthat expression andmolecular evolutionof genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These resultsmay in part explainwhy African clawed frogs have such a high incidence of polyploidization, shed light onwhy amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians

    Getting Down to Specifics: Profiling Gene Expression and Protein-DNA Interactions in a Cell Type-Specific Manner.

    No full text
    The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique, and how their individual characteristics are attributed, are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e. only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features

    Cardiac Troponins are Among Targets of Doxorubicin-Induced Cardiotoxicity in hiPCS-CMs

    No full text
    Modern diagnostic strategies for early recognition of cancer therapeutics-related cardiac dysfunction involve cardiac troponins measurement. Still, the role of other markers of cardiotoxicity is still unclear. The present study was designed to investigate dynamics of response of human cardiomyocytes derived from induced pluripotent stem cells (hiPCS-CMs) to doxorubicin with the special emphasis on their morphological changes in relation to expression and organization of troponins. The hiPCS-CMs were treated with doxorubicin concentrations (1 and 0.3 µM) for 48 h and followed for next up to 6 days. Exposure of hiPCS-CMs to 1 µM doxorubicininduced suppression of both cardiac troponin T (cTnT) and cardiac troponin I (cTnI) gene expression. Conversely, lower 0.3 µM doxorubicin concentration produced no significant changes in the expression of aforementioned genes. However, the intracellular topography, arrangement, and abundance of cardiac troponin proteins markedly changed after both doxorubicin concentrations. In particular, at 48 h of treatment, both cTnT and cTnI bundles started to reorganize, with some of them forming compacted shapes extending outwards and protruding outside the cells. At later intervals (72 h and onwards), the whole troponin network collapsed and became highly disorganized following, to some degree, overall changes in the cellular shape. Moreover, membrane permeability of cardiomyocytes was increased, and intracellular mitochondrial network rearranged and hypofunctional. Together, our results demonstrate complex effects of clinically relevant doxorubicin concentrations on hiPCS-CM cells including changes in cTnT and cTnI, but also in other cellular compartments contributing to the overall cytotoxicity of this class of cytostatics

    Screening method for the determination of tetracyclines and fluoroquinolones in animal drinking water by liquid chromatography with diode array detector

    No full text
    A liquid chromatography - diode array detector (HPLC-DAD) procedure has been developed for the determination of oxytetracycline (OTC), tetracycline (TC), chlorotetracycline (CTC), doxycyc-line (DC), enrofloxacin (ENR), ciprofloxacin (CIP), sarafloxacin (SAR) and flumequine (FLU) residues in animal drinking water. This method was applied to animal drinking water. Solid-phase extraction (SPE) clean-up on an Oasis HLB cartridge allowed an extract suitable for liquid chromatographic analysis to be obtained. Chromatographic separation was carried out on a C18 analytical column, using gradient elution with 0.1% trifluoroacetic acid - acetonitrile - methanol at 30oC. The flow-rate was 0.7 mL/min and the eluate was analysed at 330 nm. The whole procedure was evaluated according to the requirements of the Commission Decision 2002/657/EC, determining specificity, decision limit (CCa), detection capacity (CCß), limit of detection (LOD), limit of quantification (LOQ), precision and accuracy during validation of the method. The recoveries of TCs and FQs from spiked samples at the levels of 10, 100 and 1000 ^g/L were higher than 82%. The developed method based on HPLC-DAD has been applied for the determination of four tetracyclines and four fluoroquinolones in animal drinking water samples

    Technology of integrated self-aligned E/D-mode n(++)GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics

    No full text
    We describe the technology and performance of integrated enhancement/depletion (E/D)-mode n(++) GaN/InAlN/AlN/GaN HEMTs with a self-aligned metal-oxide-semiconductor (MOS) gate structure. An identical starting epi-structure was used for both types of devices without the additional need for a contacts regrowth. The n(++) GaN cap layer was etched away in the gate trenches of the E-mode HEMT while it was left intact for the D-mode HEMT. The plasma etching process was shown to be highly selective between the cap and the InAlN barrier and also to polish the InAlN surface. However, different GaN etching initiation times inside and outside the mesa region were obtained. Gate contacts were isolated using a dielectric layer deposited at low temperature through an e-beam resist to retain the self-aligned approach. Feasibility of the approach for future fast GaN-based mixed-signal electronic circuits was shown by obtaining alternative HEMT threshold voltage values of +0.8 V and -2.6 V, invariant maximal output current of similar to 0.35 A mm(-1) despite large source-to-drain distances and by demonstrating a functional logic invertor

    Combining molecular evolution and environmental genomics to unravel adaptive processes of MHC class IIB diversity in European minnows (Phoxinus phoxinus)

    Get PDF
    Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context
    corecore