167 research outputs found

    Characterisation of ground thermal and thermo-mechanical behaviour for shallow geothermal energy applications

    Get PDF
    Increasing use of the ground as a thermal reservoir is expected in the near future. Shallow geothermal energy (SGE) systems have proved to be sustainable alternative solutions for buildings and infrastructure conditioning in many areas across the globe in the past decades. Recently novel solutions, including energy geostructures, where SGE systems are coupled with foundation heat exchangers, have also been developed. The performance of these systems is dependent on a series of factors, among which the thermal properties of the soil play one of major roles. The purpose of this paper is to present, in an integrated manner, the main methods and procedures to assess ground thermal properties for SGE systems and to carry out a critical review of the methods. In particular, laboratory testing through either steady-state or transient methods are discussed and a new synthesis comparing results for different techniques is presented. In-situ testing including all variations of the thermal response test is presented in detail, including a first comparison between new and traditional approaches. The issue of different scales between laboratory and in-situ measurements is then analysed in detail. Finally, thermo-hydro-mechanical behaviour of soil is introduced and discussed. These coupled processes are important for confirming the structural integrity of energy geostructures, but routine methods for parameter determination are still lacking

    Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases

    Get PDF
    The recently discovered histone post-translational modification crotonylation connects cellular metabolism to gene regulation. Its regulation and tissue-specific functions are poorly understood. We characterize histone crotonylation in intestinal epithelia and find that histone H3 crotonylation at lysine 18 is a surprisingly abundant modification in the small intestine crypt and colon, and is linked to gene regulation. We show that this modification is highly dynamic and regulated during the cell cycle. We identify class I histone deacetylases, HDAC1, HDAC2, and HDAC3, as major executors of histone decrotonylation. We show that known HDAC inhibitors, including the gut microbiota-derived butyrate, affect histone decrotonylation. Consistent with this, we find that depletion of the gut microbiota leads to a global change in histone crotonylation in the colon. Our results suggest that histone crotonylation connects chromatin to the gut microbiota, at least in part, via short-chain fatty acids and HDACs

    The gut microbiota and cardiovascular health benefits: a focus on wholegrain oats

    Get PDF
    Existing scientific data suggest that a high intake of wholegrain foods contributes to improved gut health and a reduced risk of cardiovascular disease. Wholegrain oats are rich in dietary fibre and an important source of many bioactive components, including minerals, vitamins and phenolic compounds. The oat β‐glucans have been reported to lower low‐density lipoprotein cholesterol through their ability to increase the viscosity of intestinal chime, change the gut microbiota composition and increase the production of short‐chain fatty acids, which may contribute to the inhibition of hepatic cholesterol synthesis. Oats are also a rich source of phenolic acids, which are predominantly bound to cell wall polysaccharides through ester bonds. This bound state within oats means that phenolic acid bioavailability will largely be determined by interactions with the colonic microbiota in the large intestine. However, results from in vitro, animal and human studies have been inconsistent in relation to the impact of oats on the gut microbiota, possibly due to differences in experimental techniques and because compounds in oats, other than β‐glucans, have not been considered. This review focuses on the interaction of oat β‐glucans and phenolic acids with gut microbiota, and the subsequent link to cardiovascular health

    Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis

    Get PDF
    Background: Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis. Methods: Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry. Results: All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting. Conclusion: These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC.This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) grant ref. PTDC/SAU-FCF/104347/2008, under the scope of ‘Programa Operacional Temático Factores de Competitividade’ (COMPETE) of ‘Quadro Comunitário de Apoio III’ and co-financed by the Fundo Europeu De Desenvolvimento Regional (FEDER). Ricardo Amorim was recipient of the fellowship SFRH/BD/98002/2013, from Fundação para a Ciência e a Tecnologia (FCT Portugal).info:eu-repo/semantics/publishedVersio

    Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease:a systematic review of human studies

    Get PDF
    A hallmark of obesity is chronic low-grade inflammation, which plays a major role in the process of atherosclerotic cardiovascular disease (ACVD). Gut microbiota is one of the factors influencing systemic immune responses, and profound changes have been found in its composition and metabolic function in individuals with obesity. This systematic review assesses the association between the gut microbiota and markers of low-grade inflammation in humans. We identified 14 studies which were mostly observational and relatively small (n = 10 to 471). The way in which the microbiome is analysed differed extensively between these studies. Lower gut microbial diversity was associated with higher white blood cell counts and high sensitivity C-reactive protein (hsCRP) levels. The abundance of Bifidobacterium, Faecalibacterium, Ruminococcus and Prevotella were inversely related to different markers of low-grade inflammation such as hsCRP and interleukin (IL)-6. In addition, this review speculates on possible mechanisms through which the gut microbiota can affect low-grade inflammation and thereby ACVD. We discuss the associations between the microbiome and the inflammasome, the innate immune system, bile acids, gut permeability, the endocannabinoid system and TMAO. These data reinforce the importance of human research into the gut microbiota as potential diagnostic and therapeutic strategy to prevent ACVD

    Dietary Gut Microbial Metabolites, Short-chain Fatty Acids, and Host Metabolic Regulation

    No full text
    During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC). Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues. In this review, we summarize the roles of gut microbial SCFAs in the host energy regulation and present an overview of the current understanding of its physiological functions

    Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation.

    Get PDF
    During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC). Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues. In this review, we summarize the roles of gut microbial SCFAs in the host energy regulation and present an overview of the current understanding of its physiological functions

    Nutritional signaling via free fatty acid receptors

    Get PDF
    Excess energy is stored primarily as triglycerides, which are mobilized when demand for energy arises. Dysfunction of energy balance by excess food intake leads to metabolic diseases, such as obesity and diabetes. Free fatty acids (FFAs) provided by dietary fat are not only important nutrients, but also contribute key physiological functions via FFA receptor (FFAR)-mediated signaling molecules, which depend on FFAs’ carbon chain length and the ligand specificity of the receptors. Functional analyses have revealed that FFARs are critical for metabolic functions, such as peptide hormone secretion and inflammation, and contribute to energy homeostasis. In particular, recent studies have shown that the administration of selective agonists of G protein-coupled receptor (GPR) 40 and GPR120 improved glucose metabolism and systemic metabolic disorders. Furthermore, the anti-inflammation and energy metabolism effects of short chain FAs have been linked to the activation of GPR41 and GPR43. In this review, we summarize recent progress in research on FFAs and their physiological roles in the regulation of energy metabolism
    corecore