174 research outputs found

    Generic analysis of the response of calcifying microalgae to an elevation of pCO2 : qualitative vs quantitative analysis

    Get PDF
    International audienceCalcifying microalgae can play a key role in atmospheric CO2 trapping through large scale precipitation of calcium carbonate in the oceans. However, recent experiments revealed that the associated fluxes may be slow down by an increase in atmospheric CO2 concentration. In this paper we design models to account for the decrease in calcification and photosynthesis rates observed after an increase of pCO2 in Emiliania huxleyi chemostat cultures. Since the involved mechanisms are still not completely understood, we consider various models, each of them being based on a different hypothesis. These models are kept at a very general level, by maintaining the growth and calcification functions in a generic form, i.e. independent on the exact shape of these functions and on parameter values. The analysis is thus performed using these generic functions where the only hypothesis is an increase of these rates with respect to the regulating carbon species. As a result, each model responds differently to a pCO2 elevation. Surprisingly, the only models whose behaviour are in agreement with the experimental results correspond to carbonate as the regulating species for photosynthesis. Finally we show that the models whose qualitative behaviour are wrong could be considered as acceptable on the basis of a quantitative prediction error criterion.Les microalgues calcifiantes jouent un rôle clé dans le piégeage du CO2 atmosphérique d’origine anthropique en précipitant du carbonate de calcium qui sédimente au fond des océans. Toutefois, des expériences en laboratoire ont suggéré que cette activité biologique pourrait être diminuée par l’augmentation de la pression partielle de CO2 (pCO2) dans les océans qui a tendance à s’ équilibrer avec celle de l’atmosphère. Dans ce papier, nous concevons des modèles dynamiques pour essayer de simuler la diminution des taux de calcification et de photosynthèse observés chez Emiliania huxleyi après une hausse de la pCO2 reproduite en chémostat. Comme les mécanismes physiologiques impliqués sont encore loin d’ être complètement élucidés, nous considérons différents modèles, chacun d’eux étant basé sur une hypothèse biologique différente. Ces modèles, construits en utilisant des fonctions génériques pour caractériser les processus de croissance et de calcification, peuvent être analysés indépendamment de la forme exacte de ces fonctions et de la valeur des paramètres. L’ étude s’appuie donc sur ces fonctions génériques où la seule hypothèse est une régulation de ces taux par une des trois formes qui composent la totalité du carbone inorganique dissous : le CO2, les carbonates et les bicarbonates. Il s’en suit que chaque modèle réagit différemment à une élévation de la pCO2. Contrairement aux hypothèses classiquement admises, notre étude montre que les seuls modèles dont le comportement est en accord avec les résultats expérimentaux sont ceux pour lesquels une régulation de la photosynthèse par les carbonates a été supposée, ce qui corrobore les conclusions de travaux récents. Enfin, nous montrons que les modèles dont le comportement qualitatif est mauvais ne seraient pas rejetés sur la base d’un critère quantitatif d’erreur de prédiction

    Cell cycle implication on nitrogen acquisition and synchronization in ıt Thalassiosira weissflogii (Bacillariophyta)

    Get PDF
    International audienceThe Michaelis-Menten model of nitrogen (N) acquisition, originally used to represent the effect of nutrient concentration on the phytoplankton uptake rate, is inadequate when other factors show temporal variations. Literature generally links diurnal oscillations of N acquisition to a response of the physiological status of microalgae to photon flux density (PFD) and substrate availability. This work describes how the cell cycle also constitutes a significant determinant of N acquisition and, when appropriate, assesses the impact of this property at the macroscopic level. For this purpose, we carried out continuous culture experiments with the diatom Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle exposed to various conditions of light and N supply. The results revealed that a decrease in N acquisition occurred when a significant proportion of the population was in mitosis. This observation suggests that N acquisition is incompatible with mitosis and therefore that its acquisition rate is not constant during the cell cycle. In addition, environmental conditions, such as light and nutrient supply disrupt the cell cycle at the level of the individual cell, which impacts synchrony of the population

    Modelling light-dark regime influence on the carbon-nitrogen metabolism in a unicellular diazotrophic cyanobacterium

    Get PDF
    International audienceWe propose a dynamical model depicting nitrogen (N2 ) fixation (diazotrophy) in a unicellular cyanobacterium, Crocosphaera watsonii, grown under light limitation and obligate diazotrophy. In this model, intracellular carbon and nitrogen are both divided into a functional pool and a storage pool. An internal pool that explicitly describes the nitrogenase enzyme is also added. The model is successfully validated with continuous culture experiments of C. watsonii under three light regimes, indicating that proposed mechanisms accurately reproduce the growth dynamics of this organism under various light environments. Then, a series of model simulations is run for a range of light regimes with different photoperiods and daily light doses. Results reveal how nitrogen and carbon are coupled, through the diel cycle, with nitrogenase dynamics, whose activity is constrained by the light regime. We finally identify optimal productivity conditions

    Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus

    Get PDF
    International audienceIt is well documented that the combination of low nitrogen and phosphorus resources can lead to situations where colimitation of phytoplankton growth arises, yet the underlying mechanisms are not fully understood. Here, we propose a Droop-based model built on the idea that colimitation by nitrogen and phosphorus arises from the uptake of nitrogen. Indeed, since N-porters are active systems, they require energy that could be related to the phosphorus status of the cell. Therefore, we assumed that N uptake is enhanced by the P quota. Our model also accounts for the biological observations that uptake of a nutrient can be down-regulated by its own internal quota, and succeeds in describing the strong contrast for the non-limiting quotas under N-limited and P-limited conditions that was observed on continuous cultures with and with . Our analysis suggests that, regarding the colimitation concept, N and P would be better considered as biochemically dependent rather than biochemically independent nutrients

    A Discrete, Size-Structured Model of Phytoplankton Growth in The Chemostat

    Get PDF
    We introduce inhomogeneous, substrate dependent cell division in a nonlinear matrix model of size-structured population growth in the chemostat, first introduced by Gage et al. [7] and later analyzed by Smith [11]. We show that mass conservation is verified, and conclude that our system admits one non zero globally stable equilibrium, which we express explicitly. We then proceed to several numerical simulations, and briefly compare the prediction of the model to data, whose obtention we discuss

    Effect of gaseous cement industry effluents on four species of microalgae

    Get PDF
    International audienceExperiments were performed at lab scale in order to test the possibility to grow microalgae with CO2 from gaseous effluent of cement industry. Four microalgal species (Dunaliella tertiolecta, Chlorella vulgaris, Thalassiosira weissflogii, and Isochrysis galbana), representing four different phyla were grown with CO2 enriched air or with a mixture of gasses mimicking the composition of a typical cement flue gas (CFG). In a second stage, the culture submitted to the CFG received an increasing concentration of dust characteristic of cement industry. Results show that growth for the four species is not affected by the CFG. Dust added at realistic concentrations do not have any impact on growth. For dust concentrations in two ranges of magnitude higher, microalgae growth was inhibited

    Modelling the effect of temperature on phytoplankton growth across the global ocean

    Get PDF
    International audiencePhytoplankton are ectotherms and are thus directly influenced by temperature. They experience temporal variation in temperature which results in a selection pressure. Using the Adaptive Dynamics theory and an optimization method, we study phytoplankton thermal adaptation (more particulary the evolution of the optimal growth temperature) to temperature fluctuations. We use this method at the scale of global ocean and compare two existing models. We validate our approach by comparing model predictions with experimental data sets from 57 species. Finally, we show that temperature actually drives evolution and that the optimum temperature for phytoplankton growth is strongly linked to thermal amplitude variations

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore