21 research outputs found

    Local Impedance Spectroscopy: A Potential Tool to Characterize the Evolution of Emulsions and Foams

    Get PDF
    The potential of local impedance spectroscopy (IS) to access changes in emulsions and foams has been investigated. As test systems we used the separation of a simple oil/vinegar mixture as well as the whipping process of dairy cream. For the latter, IS data were compared to particle size distribution (PSD) measurements. Our measurements show that local IS is indeed a valuable tool to locally study processes in emulsion. On one hand, it seems to be very sensitive to small water quantities in oil thus being a suitable method for process control in water removing processes. On the other hand, concerning fat foams, it seems to be able to detect the evolution of foam structures. Both examples show that local IS could be a helpful tool for process control

    Restrictions in the ankle sagittal- and frontal-plane range of movement during simulated walking with different types of orthoses

    Get PDF
    Different types of orthoses are available to clinicians for non-surgical treatment of acute ankle sprains. The goal of this study was to scientifically compare the movement restrictions in the sagittal and frontal plane during simulated walking between one adaptable semi-rigid brace (OrthoTri-PhaseTM), four non-adaptable semi-rigid braces (OrthoStandardTM, MalleoLocTM, MalleoSprintTM, VACOankleTM), and one rigid cast. Predefined time sequences of rotational moments and axial loading during gait were applied via an ankle joint simulator, with the pneumatic pressure inside the orthoses kept constant to ensure the same condition for different trials and orthoses. The peak ranges of motion (RoMs) in the frontal and sagittal plane during gait were analyzed for statistically significant differences using single-factorial ANOVA with post-hoc Bonferroni analysis. Significant differences in peak plantar-/dorsiflexion and in-/eversion RoM during gait were found between different types of orthoses. In the sagittal plane, the rigid cast most significantly restricted overall RoM followed by the Ortho Tri-PhaseTM in Phase 1 and the Ortho StandardTM. The peak restriction in-/eversion RoM of the VACOankleTM came closest to the rigid cast, with a shift towards inversion. The VACOankleTM allowed for significantly larger dorsiflexion movement compared to all other orthoses. The present results may help clinicians in the decision-making process of finding the optimal orthosis for individual patients

    Healthy living on a healthy planet - Summary

    Get PDF
    Unsere Lebensweise macht krank und zerstört die natürlichen Lebensgrundlagen. In der Vision „Gesund leben auf einer gesunden Erde“ werden menschliche Lebensbereiche – Ernähren, Bewegen, Wohnen – gesund und umweltverträglich gestaltet sowie planetare Risiken – Klimawandel, Biodiversitätsverlust, Verschmutzung – bewältigt. Gesundheitssysteme nutzen ihre transformativen Potenziale, Bildung und Wissenschaft befördern gesellschaftliche Veränderungen. Die Vision ist nur mit internationaler Kooperation realisierbar und erfordert eine globale Dringlichkeitsgovernance.Our lifestyle is making us ill and is destroying the natural life-support systems. In the vision of ‘healthy living on a healthy planet’, human spheres of life – what we eat, how we move, where we live – are designed to be both healthy and environmentally compatible, and planetary risks – climate change, biodiversity loss, pollution – have been overcome. Health systems harness their transformative potential; education and science promote societal change. The vision can only be realized with international cooperation and requires what the WBGU terms global urgency governance

    14 Examples of How LLMs Can Transform Materials Science and Chemistry: A Reflection on a Large Language Model Hackathon

    Full text link
    Chemistry and materials science are complex. Recently, there have been great successes in addressing this complexity using data-driven or computational techniques. Yet, the necessity of input structured in very specific forms and the fact that there is an ever-growing number of tools creates usability and accessibility challenges. Coupled with the reality that much data in these disciplines is unstructured, the effectiveness of these tools is limited. Motivated by recent works that indicated that large language models (LLMs) might help address some of these issues, we organized a hackathon event on the applications of LLMs in chemistry, materials science, and beyond. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines

    Margarita de Sossa, Sixteenth-Century Puebla de los Ángeles, New Spain (Mexico)

    Get PDF
    Margarita de Sossa’s freedom journey was defiant and entrepreneurial. In her early twenties, still enslaved in Portugal, she took possession of her body; after refusing to endure her owner’s sexual demands, he sold her, and she was transported to Mexico. There, she purchased her freedom with money earned as a healer and then conducted an enviable business as an innkeeper. Sossa’s biography provides striking insights into how she conceptualized freedom in terms that included – but was not limited to – legal manumission. Her transatlantic biography offers a rare insight into the life of a free black woman (and former slave) in late sixteenth-century Puebla, who sought to establish various degrees of freedom for herself. Whether she was refusing to acquiesce to an abusive owner, embracing entrepreneurship, marrying, purchasing her own slave property, or later using the courts to petition for divorce. Sossa continued to advocate on her own behalf. Her biography shows that obtaining legal manumission was not always equivalent to independence and autonomy, particularly if married to an abusive husband, or if financial successes inspired the envy of neighbors

    Restrictions in the Ankle Sagittal- and Frontal-Plane Range of Movement during Simulated Walking with Different Types of Orthoses

    No full text
    Different types of orthoses are available to clinicians for non-surgical treatment of acute ankle sprains. The goal of this study was to scientifically compare the movement restrictions in the sagittal and frontal plane during simulated walking between one adaptable semi-rigid brace (OrthoTri-PhaseTM), four non-adaptable semi-rigid braces (OrthoStandardTM, MalleoLocTM, MalleoSprintTM, VACOankleTM), and one rigid cast. Predefined time sequences of rotational moments and axial loading during gait were applied via an ankle joint simulator, with the pneumatic pressure inside the orthoses kept constant to ensure the same condition for different trials and orthoses. The peak ranges of motion (RoMs) in the frontal and sagittal plane during gait were analyzed for statistically significant differences using single-factorial ANOVA with post-hoc Bonferroni analysis. Significant differences in peak plantar-/dorsiflexion and in-/eversion RoM during gait were found between different types of orthoses. In the sagittal plane, the rigid cast most significantly restricted overall RoM followed by the Ortho Tri-PhaseTM in Phase 1 and the Ortho StandardTM. The peak restriction in-/eversion RoM of the VACOankleTM came closest to the rigid cast, with a shift towards inversion. The VACOankleTM allowed for significantly larger dorsiflexion movement compared to all other orthoses. The present results may help clinicians in the decision-making process of finding the optimal orthosis for individual patients

    Validation of Sample Preparation Methods for Microplastic Analysis in Wastewater Matrices—Reproducibility and Standardization

    No full text
    There is a growing interest in monitoring microplastics in the environment, corresponding to increased public concerns regarding their potential adverse effects on ecosystems. Monitoring microplastics in the environment is difficult due to the complex matrices that can prevent reliable analysis if samples are not properly prepared first. Unfortunately, sample preparation methods are not yet standardized, and the various efforts to validate them overlook key aspects. The goal of this study was to develop a sample preparation method for wastewater samples, which removes natural organic matter without altering the properties of microplastics. Three protocols, based on KOH, H2O2, and Fenton reactions, were chosen out of ten protocols after a literature review and pre-experiments. In order to investigate the effects of these reagents on seven polymers (PS, PE, PET, PP, PA, PVC, and PLA), this study employed µFTIR, laser diffraction-based particle size analysis, as well as TD-Pyr-GC/MS. Furthermore, the study discussed issues and inconsistencies with the Fenton reactions reported in the literature in previous validation efforts. The findings of this study suggest that both H2O2 and Fenton reactions are most effective in terms of organic matter removal from microplastic samples while not affecting the tested polymers, whereas KOH dissolved most PLA and PET particles

    Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion

    No full text
    Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse; 1; that is driven by chemotherapy-resistant leukaemic stem cells (LSCs); 2,3; . LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice; 4; . However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity; 5; , which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D-a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells; 6-9; -are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo
    corecore