67 research outputs found

    Resilience of Micropollutant and Biological Effect Removal in an Aerated Horizontal Flow Treatment Wetland

    Get PDF
    The performance of an aerated horizontal subsurface flow treatment wetland was investigated before, during and after a simulated aeration failure. Conventional wastewater parameters (e.g., carbonaceous biological oxygen demand, total nitrogen, and Escherichia coli) as well as selected micropollutants (caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine) were investigated. Furthermore, the removal of biological effects was investigated using in vitro bioassays. The six bioassays selected covered environmentally relevant endpoints (indicative of activation of aryl hydrocarbon receptor, AhR; binding to the peroxisome proliferator-activated receptor gamma, PPARγ; activation of estrogen receptor alpha, ERα; activation of glucocorticoid receptor, GR; oxidative stress response, AREc32; combined algae test, CAT). During the aeration interruption phase, the water quality deteriorated to a degree comparable to that of a conventional (non-aerated) horizontal subsurface flow wetland. After the end of the aeration interruption, the analytical and biological parameters investigated recovered at different time periods until their initial treatment performance. Treatment efficacy for conventional parameters was recovered within a few days, but no complete recovery of treatment efficacy could be observed for bioassays AhR, AREc32 and CAT in the 21 days following re-start of the aeration system. Furthermore, the removal efficacy along the flow path for most of the chemicals and bioassays recovered as it was observed in the baseline phase. Only for the activation of AhR and AREc32 there was a shift of the internal treatment profile from 12.5% to 25% (AhR) and 50% (AREc32) of the fractional length

    No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing.

    Get PDF
    BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.The COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 - HEALTH-F2-2009-223175). BCAC is funded by Cancer Research UK [C1287/A10118, C1287/A12014] and by the European Community´s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009-223175) (COGS). Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 16 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defense (W81XWH-10-1- 0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Project established by the National Cancer Institute and National Human Genome Research Institute.This is the author accepted manuscript. The final version is available from BMJ Group at http://dx.doi.org/10.1136/jmedgenet-2015-103529

    Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk

    Get PDF
    In breast cancer, high levels of homeobox protein Hox-B13 (HOXB13) have been associated with disease progression of ER-positive breast cancer patients and resistance to tamoxifen treatment. Since HOXB13 p.G84E is a prostate cancer risk allele, we evaluated the association between HOXB13 germline mutations and breast cancer risk in a previous study consisting of 3,270 familial non-BRCA1/2 breast cancer cases and 2,327 controls from the Netherlands. Although both recurrent HOXB13 mutations p.G84E and p.R217C were not associated with breast cancer risk, the risk estimation for p.R217C was not very precise. To provide more conclusive evidence regarding the role of HOXB13 in breast cancer susceptibility, we here evaluated the association between HOXB13 mutations and increased breast cancer risk within 81 studies of the international Breast Cancer Association Consortium containing 68,521 invasive breast cancer patients and 54,865 controls. Both HOXB13 p.G84E and p.R217C did not associate with the development of breast cancer in European women, neither in the overall analysis (OR = 1.035, 95% CI = 0.859-1.246, P = 0.718 and OR = 0.798, 95% CI = 0.482-1.322, P = 0.381 respectively), nor in specific high-risk subgroups or breast cancer subtypes. Thus, although involved in breast cancer progression, HOXB13 is not a material breast cancer susceptibility gene.Peer reviewe

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Mixture effects in samples of multiple contaminants – An inter-laboratory study with manifold bioassays

    Get PDF
    © 2018 Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential adverse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters. We compared the observed mixture effects against component-based mixture effect predictions derived from additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the active components as predicted even against a background of other inactive contaminants. When none of the mixture components showed any activity by themselves then the mixture also was without effects. The mixture effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity predictions for concentration addition and independent action, reflecting well the diversity of the anticipated modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell- and organism-based endpoints produced mixture responses in agreement with the additivity expectation of concentration addition. Exceptionally, expected (additive) mixture response did not occur due to masking effects such as general toxicity from other compounds. Generally, deviations from an additivity expectation could be explained due to experimental factors, specific limitations of the effect endpoint or masking side effects such as cytotoxicity in in vitro assays. The majority of bioassays were able to quantitatively detect the predicted non-interactive, additive combined effect of the specifically bioactive compounds against a background of complex mixture of other chemicals in the sample. This supports the use of a combination of chemical and bioanalytical monitoring tools for the identification of chemicals that drive a specific mixture effect. Furthermore, we demonstrated that a panel of bioassays can provide a diverse profile of effect responses to a complex contaminated sample. This could be extended towards representing mixture adverse outcome pathways. Our findings support the ongoing development of bioanalytical tools for (i) compiling comprehensive effect-based batteries for water quality assessment, (ii) designing tailored surveillance methods to safeguard specific water uses, and (iii) devising strategies for effect-based diagnosis of complex contamination

    How to improve the dosing of chemicals in high-throughput in vitro mammalian cell assays

    No full text
    Controlling the exposure of chemicals in mammalian cell assays is an important prerequisite for the application of methods in risk and hazard assessment of chemicals. Existing models require numerous physicochemical and system parameters to quantify the effective concentration in the assay. Synthesizing these studies, this article briefly communicates how the protein-rich supplement in the medium can be utilized to adjust constant and quantifiable exposure concentrations without the need for measurements and complex modeling. We present a simplified mass balance equation based on chemical properties and system parameters from openly accessible databases, which can be used to adjust the dose of chemicals in the exposure medium, leading to defined and stable freely dissolved concentrations (). The proposed framework prevents experimental artifacts associated with the use of cosolvents and medium oversaturation and enables the conversion of effect data to freely dissolved effect concentrations (EC), which can directly be applied in quantitative to extrapolation models and compared to other exposure scenarios
    corecore