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A B S T R A C T

Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality
monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential ad-
verse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation
of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments
of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from
interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds
and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The
assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based
bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique
known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters.
We compared the observed mixture effects against component-based mixture effect predictions derived from
additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the
active components as predicted even against a background of other inactive contaminants. When none of the
mixture components showed any activity by themselves then the mixture also was without effects. The mixture
effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity
predictions for concentration addition and independent action, reflecting well the diversity of the anticipated
modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture
responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell-
and organism-based endpoints produced mixture responses in agreement with the additivity expectation of
concentration addition. Exceptionally, expected (additive) mixture response did not occur due to masking effects
such as general toxicity from other compounds. Generally, deviations from an additivity expectation could be
explained due to experimental factors, specific limitations of the effect endpoint or masking side effects such as
cytotoxicity in in vitro assays. The majority of bioassays were able to quantitatively detect the predicted non-
interactive, additive combined effect of the specifically bioactive compounds against a background of complex
mixture of other chemicals in the sample. This supports the use of a combination of chemical and bioanalytical
monitoring tools for the identification of chemicals that drive a specific mixture effect. Furthermore, we
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demonstrated that a panel of bioassays can provide a diverse profile of effect responses to a complex con-
taminated sample. This could be extended towards representing mixture adverse outcome pathways. Our
findings support the ongoing development of bioanalytical tools for (i) compiling comprehensive effect-based
batteries for water quality assessment, (ii) designing tailored surveillance methods to safeguard specific water
uses, and (iii) devising strategies for effect-based diagnosis of complex contamination.

1. Introduction

The provision of clean water for ecosystems and humans is central
for reaching all of the United Nations sustainable development goals
(UNEP, http://web.unep.org/post2015/). Faced with a rapidly accel-
erating increase in chemical innovation, production, consumption and
emission, and a growing world population with increasing demands,
safeguarding the quality of surface waters has becomes a major chal-
lenge (Schwarzenbach et al., 2006). Two complementary approaches
have been developed to deal with unwanted chemical contamination.
In prospective risk assessment potential environmental risks are as-
sessed by comparing predicted environmental chemical exposure with
expected adverse effects based on prior information on compound
toxicities and other properties. In monitoring efforts, we seek to screen
relevant contaminations in the environment. Both approaches rely
strongly on a perspective that focuses on single chemicals, one-by-one,
falling short of the reality of contamination of many environmental
systems with complex mixtures of chemicals (Loos et al., 2009; Brack
et al., 2015; Escher et al., 2013a).

Prospective chemical assessment dealing with mixture exposures
and their potential combined effects has progressed considerably
(Deneer, 2000; Altenburger and Greco, 2009). A component—based
approach which seeks to predict the toxicity of mixtures on the basis of
the effects of its components has gained substantial empirical support
and is now widely accepted (Kienzler et al., 2016). In routine en-
vironmental monitoring, by contrast, exposure-oriented chemical ana-
lytical studies and biology-focused investigations are completely sepa-
rate activities. Under the water framework directive (WFD, 2000)
indicators of chemical and ecological quality are regarded as two se-
parate, poorly connected categories. Causal links between chemical
exposures and ecological effects are often discussed from a single cause-
effect perspective, with a focus on single chemicals, but do not consider
the occurrence of multiple chemicals as mixtures, multiple stress factors
and their combined effects. The integration of bioassays as effect-based
methods in environmental monitoring is intended to bridge this gap,
supporting the identification of mixture exposures (Altenburger et al.,
2015; Wernersson et al., 2015; Brack et al., 2017).

In a ring trial, Carvalho et al. (2014) investigated two mixtures of
substances of concern. Using a panel of 35 different bioassays, mixtures
with components at their individual environmental quality standard
level (EQS) were shown to elucidate effects in several of the assays.
These findings and earlier reviews demonstrated that regulatory single-
chemical threshold values may not be fit for purpose to protect against
mixture exposure (Carvalho et al., 2014; Kortenkamp et al., 2009).
Schoenfuss et al. (2015) studied mixtures of pharmaceuticals at en-
vironmentally relevant concentrations together with effluent exposures
by using various effect biomarkers in fish. The authors interpreted their
observations as interactions between contaminants in the mixture,
however, without reference to an expected additive effect of the com-
bination.

Case studies of extracted freshwater samples using chemical and
bioanalytical analysis have demonstrated that bioassays can provide
complementary information for water monitoring. For instance, the
pattern of bioassay responses obtained across 22 sites stretching across
a major part of the river Danube resembled well those of chemical
analytical concentrations of target chemicals (Neale et al., 2015). Fur-
ther, a comparison of bioassay effects with samples upstream a effluent
outlet, downstream and with the effluent itself with measured

chemicals and their effects consistently showed an increased impact of
effluents from wastewater treatment plants at tributaries of the Rhine
(Neale et al., 2017a, 2017b) and river Danube (König et al., 2017).
When the combined effects are expressed as the sum of bioanalytical
equivalent concentrations for quantified chemicals and are then com-
pared to the actually observed effects in environmental samples the
findings can be separated into two groups: First, there are assays in-
dicative of highly specific receptor-mediated effects such as algal pho-
tosynthesis inhibition, or binding to the estrogen receptor. In these
assays, most of the observed bioactivity can be explained in terms of the
detected photosystem II inhibiting herbicides or natural estrogens, re-
spectively. Second, with assays sensitive to more general effects trig-
gered by many different chemicals, such as cytotoxicity and induction
of oxidative stress response there is an explanation gap of effects that
remain unaccounted for. Thus, it is sometimes difficult to explain ob-
served mixture effects using component-based mixture effect predic-
tion. Potential reasons might be due to compounds that were over-
looked in the chemical target analyses (Escher et al., 2013a) or to an
inaccurate quantification of bioactive concentrations close or below the
analytical detection limit, such as for potent xenoestrogens. Further-
more, our current knowledge of the components' bioactivities in spe-
cific assays (Neale et al., 2017a, 2017b) and the validity of common
mixture effect concepts under conditions of complex exposure need to
be scrutinized (Altenburger et al., 2004).

The objective of this study was to verify the ability of a suite of
bioanalytical tools to detect bioactivity of specific compounds in a
mixture exposure setting against a background of co-occurring water
contaminants. We extend previous work (Busch et al., 2016; Neale
et al., 2017a, 2017b) by rigorous investigation of the ability of a panel
of bioassays to detect joint bioactivities in a mixture of chemicals with
diverse modes of actions (MoAs). To achieve our aims, we (i) defined a
bioassay panel comprising assays for detection of different key events
and apical endpoints (Altenburger et al., 2015; Neale et al., 2017a,
2017b), and (ii) utilised a component-based mixture prediction ap-
proach with best-fit modelling of concentration effect relationships
(Scholze et al., 2001, 2014). We designed a mixture of twelve com-
pounds with anticipated non-similar modes of actions in two different
mixture ratios with the aim of studying (a) the detectability of com-
bined effects against a background of components presumed to be in-
active, (b) the ability to capture relevant bioactivities at mixture com-
positions that may occur in environmental exposures. Results were
assessed by comparing predicted and observed combined effects for
each assay and through mapping against the expected occurrence of
specific biological effects (key events). By testing the same two mixtures
in different bioassay we were able to assess the performance of different
bioassays for complex exposure analysis and gained an impression of
the usefulness of response data for individual compounds for predicting
mixture effects in environmental exposure scenarios.

2. Materials and methods

2.1. Approach

For our round robin mixture effect study we started with single
compound testing using 21 different bioassays. The compounds to be
characterised by individual concentration-effect relationships were a
subset of chemicals of the chemical fingerprinting effort described in
Neale et al. (2017a). Components for the mixture testing were selected
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such that at least two compounds were active in each assay. Con-
centration-effect data for the mixture design planning were available
from previous studies (Escher et al., 2017; Neale et al., 2017a, 2017b)
for all assays (Table 1). Using more sophisticated concentration-effect
models (Scholze et al., 2001), we selected twelve compounds for in-
clusion in the mixture (Table 2). We kept assays with no bioactive
compounds (androgen response, glucocorticoid response, and two
Ames assays) as negative controls. Two mixtures were generated in
different ratios from those twelve compounds (Table 3). The individual
concentration-effect relationships for all chemicals and bioassays al-
lowed quantitative mixture predictions according to the mixture ad-
ditivity concepts (Eqs. (1) and (2)).

2.2. Bioassays

A summary of the nineteen bioassays used and references for de-
scription of methods and applications is provided in Table 1. Experi-
mental details and standard operating procedures are also provided in
the SI of Neale et al. (2017a, 2017b) and in Table S2.

2.3. Mixture composition

Individual chemicals were selected from a compilation and hazard
ranking of chemicals detected in water contamination monitoring stu-
dies and from their known MoA (Busch et al., 2016). The selection,
experimental design, and single compound study are further described
in the SI. The chemicals selected their identity, use, and MoA group
classification are shown in Table 2 (Busch et al., 2016). The suppliers,
modelled physicochemical properties, and additional quality informa-
tion are provided in the SI, Table S1.

2.4. Mixture testing

The two mixtures were prepared as stock solutions in methanol
(HPLC grade) at UFZ and distributed to all participating laboratories.
Dilution series testing was performed with the bioassays based on the
expected combined effects. All assays were conducted in at least two

independent repeats against solvent controls and within a period of
three months after distribution, with the exception of the AhR- and
PPARγ-assays which were completed 6months after sample distribu-
tion.

Several means of quality controlling the nominal concentrations and
their stability over the course of the experiments were undertaken,
which are described in more detail in the SI.

2.5. Concentration-effect data analysis

The selection of concentration-effect model selection for non-linear
regression analysis was conducted according to the best-fit regression
approach (Scholze et al., 2001), with various regression functions fitted
to the same set of the data. As an estimator of the best-fitting model we
used the Akaike Information Criterion (AIC). The reader is referred to
the SI for further details.

2.6. Mixture prediction and assessment

As described by Faust et al. (2001), under the assumption of con-
centration addition (CA) a mixture concentration producing an effect X
can be calculated for a n-component mixture as

∑= ⎛

⎝
⎜

⎞

⎠
⎟

=

−

EC (mixture)
p

EC
,X

i 1

n
i

X,i

1

(1)

where ECX(mixture) is the mixture concentration that produces the
effect X for a combination of n individual concentrations ci, ECX,i are
the concentrations of the individual components that on their own
produce the same effect X as the mixture, and pi is the ratio of the ith

component in the mixture (pi= ci/(c1+…+cn)). The individual ef-
fect concentrations are derived from the inverse of the nonlinear re-
gression function which describes best the observed concentration-ef-
fect data of the components (as described above).

The basic version of independent action (IA) has been formulated
under the simple assumption that the susceptibilities of the individuals
of an at-risk-population to different dissimilarly acting mixture

Table 1
Bioassays used in the mixture round robin study.

Biological level Biosystem Effect observation Indication of Assay name Method reference

Nuclear receptor Mammalian and fish cells Pregnane X receptor activation Activation of biotransformation HG5LN-hPXR Lemaire et al., 2006
AhR receptor activation Activation of biotransformation AhR CALUX Brennan et al., 2015
Estrogen receptor activation Estrogen response MELN Balaguer et al., 1999

ZELH-zfERalpha, ZELH-
zfERbeta2

Cosnefroy et al., 2011

Androgen receptor activation/
inhibition

Androgen/anti-androgen MDA-kb2
Anti-MDA-kb2

Wilson, 2002

Inhibition of glucocorticoid
receptor (GR)

Glucocorticoid response GR CALUX van der Linden et al.,
2008

PPAR-γ nuclear peroxisome
proliferator-activated receptor-γ

Metabolism homeostasis PPARγ-UAS-293H Neale et al., 2017b

Cellular Salmonella typhimurium Ames test using diagnostic strains Mutagenicity Ames microplate agar
Ames fluctuation test

Mortelmans and
Zeiger, 2000
Reifferscheid et al.,
2012

AREc32 based on MCF7 breast
cancer cell line

Nrf2-ARE activation Adaptive response to oxidative
stress

AREc32 Escher et al., 2012a

Organism
receptor

Zebrafish embryo (Danio rerio) Estrogenic cyp 19a1b-GFP
expression

Estrogen response Cyp19a1b-GFP or EASZY Brion et al., 2012

Medaka embryo (Oryzias
latipes)

Estrogenic choriogenin-GFP
activation

Estrogen/anti-estrogen response ChgH-GFP or REACTIV Spirhanzlova et al.,
2016

Organism apical
effects

Algae (Chlamydomonas
reinhardtii)

Growth Apical effects, multiple MoA Algal population growth
inhibition

de Almeida et al., 2017

Daphnia magna Motility Apical effects, multiple MoA Daphnia immobilisation David et al., 2011
Zebrafish embryo (Danio rerio) Development Apical effects, multiple MoA zFET – well plate Seiler et al., 2014

zFET - glas vials Schmidt et al., 2016
Aliivibrio fischeri Bioluminescence inhibition Apical effects, cytotoxicity,

mainly reactive MoA
Microtox Escher et al., 2017
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components are not correlated with each other (Bliss, 1939). For a n-
compopund mixture and a relative effect endpoint described by des-
cending concentration response curves (Eq. (1)), IA is defined as

∏=
=

E c E c( ) ( ),mixture
i

n

i
1 (2)

where E(ci) denote the effects produced by the individual compounds
ci, and E(cmixture) is the total effect of the mixture. The main assumption
is that the effect endpoint is normalised to an effect range 0 to 1, i.e.
control and exposure mean estimated outside this range would violate
the use of this equation.

As all mixtures were tested according to the fixed-ratio design (i.e.
total mixture concentration was varied while the concentration ratio of
the components was constant), a huge number of different concentra-
tion/effect pairs were generated by using Eqs. (1) and (2) and con-
nected by straight lines, providing a visualization of the predicted
concentration–response curve.

To account for the statistical uncertainty in the CA and IA predic-
tion, we used a combination of Monte-Carlo (MC) simulations and
bootstrapping regression functions (Efron and Tibshirani, 1993) to
produce approximate 95% confidence limits around the predicted mean
mixture effect.

3. Results

We studied the capability of a panel of 19 bioassays to detect spe-
cific combined effects against two background mixtures of 12 organic
chemicals, all of which have been identified as relevant water con-
taminants. The mixture comprised a diverse range of chemical struc-
tures and modes of action. The observed bioactivities of the 12 com-
pounds agreed well with available knowledge as discussed in Neale
et al. (2017a, 2017b). From these concentration-effect data we esti-
mated a best-fit regression model for each effect endpoint which was
then used to calculate the non-interaction additivity expectation of
their joint effects. For all assays, these predictions were derived from
concentration addition (Eq. (1)). For all apical endpoints we also cal-
culated mixture effects according to independent action (Eq. (2)). These
predicted mixture effects were subsequently compared with experi-
mentally observed combined effects.

3.1. Individual compounds

Examples of concentration-effect data from individual compounds
are shown in Fig. 1, one for an apical endpoint (mortality in the zeb-
rafish embryo after exposed to diuron, Fig. 1A) and the other for a
receptor-mediated response (estrogen receptor activation in a human
reporter cell assays exposed to bisphenol A, Fig. 1B). The best-fit re-
gression models for all individual compounds and mixtures are

Table 2
Chemicals used in the mixture study (information according to Busch et al., 2016).

Compound CAS RN Use group Chemical group Mode of action group

Diazinon 333-41-5 Pesticide Organophosphorus Neuroactive
Diclofenac 15307-86-5 Pharmaceutical Neutral Organics Anti-inflammatory
Bisphenol A 80-05-7 Industrial Chemical Phenols Endocrine activity
Propiconazole 60207-90-1 Pesticide Triazole Sterol biosynthesis inhibition
Triphenylphosphate 115-86-6 Industrial Chemical Esters Neuroactive
Diuron 330-54-1 Pesticide Phenylurea Photosynthesis inhibition
Chlorophene 120-32-1 Pesticide Chlorinated phenol unspecific
Benzo[a]pyrene 50-32-8 Industrial Chemical PAH Nucleic acid damage, mutagenicity
Benzo[b]fluoranthene 205-99-2 Industrial Chemical PAH Nucleic acid damage mutagenicity
Triclosan 3380-34-5 Biocide Chlorinated Phenol Lipid metabolism disturbance
Cyprodinil 121552-61-2 Pesticide Pyrimidine Protein biosynthesis inhibition
Genistein 446-72-0 Pharmaceutical Isoflavone Mitosis, cell cycle interference, Endocrine activity

For the first mixture (Mix I) we used a mixture composition mimicking the unbalanced nature of ‘real’ exposure such that a mixture effect was to be expected in most assays (and not only
due to a single compound), whereas the second mixture (Mix II) was chosen to represent a realistic ratio of the mixture components as it may occur in freshwaters.

Table 3
Composition of the mixtures used for the round robin combined effect study across bioassays and environmental concentrations (MEC95, Busch et al., 2016), which defined the Mix II.

Compound Mixture 1 Mixture 2 MEC 95b [mol/L] Highest expected sensitivity (based on MoA information and bioactivity cf. Table S3a–j)

Mix I Mix II

Fraction of total mixture concentration

Ratioa Ratiob

Diazinon 4.997E−05 1.303E−03 2.0 E−11 Dapnids
Diclofenac 2.499E−01 1.928E−01 3.0 E−09 Zebrafish
Bisphenol A 5.830E−03 2.768E−01 4.2 E−09 Estrogen activity
Propiconazole 4.997E−01 5.630E−03 8.5 E−11 Anti-androgen activity, biotransformation
Triphenylphosphate 1.249E−01 1.537E−02 2.3 E−10 Daphnids, zebrafish, biotransformation
Diuron 4.997E−03 1.384E−02 2.1 E−10 Algae
Chlorophene 7.496E−02 4.251E−01 6.4 E−09 Anti-androgen activity
Benzo(a)pyrene 4.997E−04 6.289E−04 9.5 E−12 Daphnids, AMES
Benzo(b)fluoranthene 8.329E−04 6.315E−04 9.5 E−12 Oxidative stress
Triclosan 2.915E−02 2.583E−02 3.9 E−10 Algae, zebrafish, anti-androgen activity
Cyprodinil 8.329E−03 1.242E-02 1.9 E−10 Daphnids
Genistein 8.329E−04 2.968E-02 4.5 E−10 Estrogen activity

a Given is the fraction of each chemical present in the mixture, i.e. the ratio of its concentration to the total mixture concentration. The number of digits is provided to allow
repeatability and does not imply a statement on precision.

b 95percentile of measured aquatic concentrations taken from Busch et al., 2016.
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provided in the supplement (Tables S3a-S3j). Our aim was to describe
the observed concentration-effect data in the best possible way over a
large concentration range, and statistical analysis confirmed that this

cannot be achieved by using a pre-defined single nonlinear regression
function for all endpoints and compounds. For cell-based continuous
responses the logit function was typically selected as the best-fitting
model: logit is a reparameterization of the Hill equation (on log-trans-
formed concentrations) which is commonly used in biochemistry and
pharmacology to analyse the binding equilibria in ligand-receptor in-
teractions. Its selection as best-fitting regression model was therefore
not surprising, as most cell-based effect endpoints are expected to re-
flect closer proximity to specific pharmacological activities, i.e. adhere
to the law of mass action (Kenakin, 2015). For apical endpoints, the
selected best-fitting models varied, with the Weibull model often pro-
viding the best data description.

The biological activity expressed as EC for the 12 compounds
spanned up to six orders of magnitude (Tables S3a-l). If these values are
compared with concentrations estimated for their baseline toxicity
(apical endpoints) or their cytotoxicity (cell-based endpoints), the dif-
ferences suggest biological effects from close to baseline activity up to
highly specific responses. Compounds were not reported if they showed
responses only at cytotoxic or water non-soluble concentrations.

3.2. Mixtures

The observed combined effects and the corresponding CA and IA
mixture effect predictions for mixtures 1 and 2 are provided in Tables 4
and 5 for bioassays where statistically significant mixture effects were
recorded. For two mixtures, Fig. 2 provides exemplarily their predicted
and observed concentration-response data as two illustrations of data
situations and modelling. Fig. 3 than displays the resulting concentra-
tion-response relationships for expected and observed mixture effects
from Mix I exposure for all assays that showed statistically significant
mixture responses.

The assessment of the observed mixture effects was subsequently
performed in a two-step procedure. First, we analysed whether a
combined effect can be detected by comparing against the components'
individual activities. Secondly, we compared the observed with the
predicted combination effects.

For the five bioassays with apical effect observations we found in 9
of the 10 cases that the combined effects were clearly higher than the
effects of any of the individual components (Fig. S1). Expected com-
bined effects based on the mixture modelling for all apical bioassays
showed that concentration addition always provided the more

Fig. 1. Examples of experimental concentration-effect data (black dots) and best-fit re-
gression curve for (A) apical effects of diuron on zebrafish embryonic development (zFET,
glass vial) and (B) human MCF-7 cell-based estrogen receptor activation (MELN) by bi-
sphenol A. Shown are results from at least three independent experiments, dashed curves
are the respective 95% CIs for the regression fits. Responses judged to be influenced by
cytotoxicity shown as open circles were not included in data analysis.

Table 4
Predicted and observed effect concentrations for mixturesa including statistical uncertainty for the apical endpoint bioassays.

Effect Concentration EC50mix [M] EC50: predicted/observed

Observed Predicted by CA Predicted by IA

Mean 95% CI Mean 95% CI Mean 95% CI CA IA

zFET – glass vial, fish mortality (48 h exposure)
Mix I 2.03E−05 [1.89E−05–2.13E−05] 1.48E−05 [1.33E−05–1.60E−05] 3.85E−05 [3.24E−05–4.37E−05] 0.73 1.90
Mix II 1.59E−05 [1.42E−05–1.77E−05] 1.30E−05 [1.11E−05–1.47E−05] 2.32E−05 [1.82E−05–2.95E−05] 0.82 1.46

zFET-96 well plate, fish mortality (48 h exposure)
Mix I 5.50E−05 [4.66E−05–6.43E−05] 3.19E−05 [2.84E−05–3.60E−05] 6.32E−05 [5.08E−05–7.68E−05] 0.58 1.15
Mix II 3.55E−05 [2.99E−05–4.28E−05] 2.27E−05 [2.00E−05–2.58E−05] 4.08E−05 [3.39E−05–5.01E−05] 0.64 1.15

Algae population growth inhibition (72 h exposure)
Mix I 2.52E−05 [2.41E−05–2.63E−05] 1.58E−05 [1.33E−05–1.81E−05] 2.70E−05 [2.14E−05–3.24E−05] 0.63 1.07
Mix II 9.20E−06 [8.98E−06–9.45E−06] 1.02E−05 [8.03E−06–1.20E−05] 1.65E−05 [1.23E−05–2.04E−05] 1.11 1.79

Daphnia immobilisation test (48 h exposure)
Mix I 5.78E−06 [5.20E−06–6.32E–06] 2.53E−06 [2.11E−06–2.84E−06] 4.08E−06 [2.82E−06–5.23E−06] 0.44 0.71
Mix II 6.19E−07 [5.67E−07–6.67E−07] 5.66E−07 [4.84E−07–6.30E−07] 6.97E−07 [5.93E−07–8.01E−07] 0.91 1.13

Microtox (30min exposure)
Mix I 7.68E−04 [5.91E−04–1.01E−03] 2.04E−04 [1.47E−04–2.54E−04] 3.58E−04 [2.24E−04–4.53E−04] 0.27 0.47
Mix II 9.18E−05 [7.59E−05–1.11E−04] 5.64E−05 [3.84E−05–7.87E−05] 7.75E−05 [4.85E−05–1.24E−04] 0.61 0.84

CA – Concentration Addition, IA – Independent Action, CI – Confidence Interval; numbers in bold indicate statistical significance between predicted and observed mean.
a Mixture ratios as defined in Table 3.
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conservative mixture prediction, i.e. concentration addition calculated
combined effects at lower concentrations compared to the concept of
independent action. Comparing the predicted with observed combined
effects for the two mixtures in these bioassays (Table 4) at the estimated
median effect levels and including statistical uncertainty revealed the
following picture. Qualitatively, i.e. looking for a statistical significant
difference between expected and observed median effect level, six out
of the ten mixture-bioassay combinations studied were less active than
anticipated on the basis of a concentration additive response, while
three of these ten were more active than independent action would
predict (Table 4). The mixture observations for Mix I in the Microtox
assay suggest less than expected combined effects compared against
both concepts, while for the Mix II this was not observed. The quanti-
tative differences ranged from a maximum of a 3.7-fold overestimation
of the combined effect at median effect concentration to a 1.9-fold
underestimation of the actual effect compared to independent action.
Concentration addition in none of the cases provided an under-
estimation of the observed combined effect. The quantitative differ-
ences to either model were clearly less than a factor of two despite
being significant in several cases, except for the Mix I in the Microtox
assay, where the mixture effect was much lower than expected. Here,
we suspect that some compounds precipitated invisibly in solution be-
cause the Microtox assay is run in artificial seawater that is more likely
to precipitate organic chemicals due to relatively high ionic strength
compared with freshwater buffers or tissue culture media.

From the 14 bioassays which detected specific responses, seven
recorded a response with the 12-component mixture (Fig. S2). The in-
dividual components in the cell-based assays showed higher variability
between independent experimental repeats (Tables S3a–j), and baseline
responses were sometimes different from the control. Moreover, cyto-
toxicity was a potential confounder at higher concentrations, e.g. for
the hPXR response. The effect concentrations of the mixture corre-
sponding to median effects varied by four orders of magnitude across all
bioassays, from 7.3 ∗ 10−8 to 7.7 ∗ 10−4 mol/L regarding the total
mixture concentration (=sum of individual components). At the
highest usable mixture concentrations, no mixture effect were found for

the AMES assays, the androgenic response in MDA-kb2 in agonistic
response mode and the GR CALUX response assays, which is in line with
the expectations from the 12 studied components with no to very low
individual bioactivities in these assays. Thus, most of the seven assays
reported here successfully discriminated combined effects from those of
the most active components in the mixtures over a wide range of con-
centrations (Fig. S2a–e). Remarkable exceptions were found for the
ZELH-alpha and -beta2 cells, and the Cyp19a1b, where no agonistic
effect could be detected for mixtures (not illustrated) although this was
predicted (Tables S4 and S5). In the PPARγ-assay, neither of the two
mixtures reached a 20% response level, which is consistent with the
very low effect expected by the CA prediction (Fig. S3).

The comparison of predicted with observed combined effects for the
two mixtures in the bioassays using receptor-based endpoints at the
estimated low effect levels (EC10, IC20, or ECIR1.5) and including sta-
tistical uncertainty is displayed in Table 5. For these responses only
concentration addition was used as a reference. Ten out of the 13 ob-
served combined responses were within the uncertainty range of the
expected concentration additive response and could thus be assessed to
be in agreement with the expected combined effect. For two assays the
observed mixture response of Mix I was statistically significantly more
active than expected. For the hPXR activation Mix I was 1.9-fold more
active than expected and just outside the confidence interval for the
expected response, and for the oxidative stress response detected using
the AREc32 assay Mix I showed a 2.9-fold significantly higher mixture
activity than expected. By contrast, the Mix II showed a 6.7-fold lower
activity in the AhR-assay compared to a concentration additive re-
sponse. For the PPARγ-assay, Mix II showed no measurable effect (Fig.
S3) whereas the Mix I was in line with the expected concentration
additive response, however this response needs to be interpreted with
caution as effects did not reach 20% before cytotoxicity started to
compromise the cells.

In summary, a combined effect in response to exposure to a mixture
of 12 organic compounds with different modes of action could clearly
be detected in 12 of the 14 bioassays where it was expected. Those 5
bioassays where any individual compound showed no bioactivity by

Table 5
Predicted and observed effect concentrations for mixtures including statistical uncertainty for receptor-based bioassays.

Effect concentration EC10mix [M]

Observed CA Predicted/observed

Mean 95% CI Mean 95% CI

AhR CALUX - Aryl hydrocarbon receptor activation (24 h exposure)
Mix I 8.79E−07 [2.54E−07–2.41E−06] 1.81E−07 [6.76E−08–3.13E−07] 0.21
Mix II 1.52E−06 [5.21E−07–3.43E−06] 2.25E−07 [7.80E−08–3.93E−07] 0.15
HG5LN-hPXR activation (16 h exposure)
Mix I 1.35E−06 [9.97E−07–1.69E−06] 2.58E−06 [1.74E−06–3.41E−06] 1.91
Mix II 1.21E−05 [9.37E−06–2.05E−05] 5.52E−06 [3.90E−06–6.02E−06] 0.46
PPARγUAS-293H - PPAR gamma activation (24 h exposure)
Mix I 1.07E−06 [5.35E−07–1.67E−06] 9.74E−07 [4.64E−07–1.79E−06] 0.91
Mix II – 1.30E−06 [6.11E−07–2.46E−06] –
MELN - Estrogen receptor activation (24 h exposure)
Mix I 2.98E−06 [1.83E−06–4.70E−06] 2.91E−06 [1.87E−06–4.24E−06] 0.98
Mix II 7.30E−08 [3.21E−08–1.42E−07] 9.48E−08 [5.92E−08–1.51E−07] 1.30
ChgH-GFP – Estrogen response (24 h exposure)
Mix I 5.59E−06 [4.39E−06–7.21E−06] 1.10E−05 [6.08E−06–1.52E−05] 1.97
Mix II 4.55E−06 [1.88E−06–6.17E−06] 4.87E−06 [2.36E−06–8.05E−06] 1.07

Inhibitory Concentration IC20mix [M]
MDA-kb2 - Anti-androgenicity (24 h exposure)
Mix I 2.96E−06 [8.61E−07–6.26E−06] 1.16E−06 [8.90E−07–1.45E−06] 0.39
Mix II 6.95E−07 [3.49E−07–1.17E−06] 1.14E−06 [8.68E−07–1.42E−06] 1.64

Effect Concentration ECIR 1.5 [M]
AREc32 - oxidative stress (24 h exposure)
Mix I 3.93E−05 [3.21E−05–4.66E−05] 1.15E−04 [9.72E−05–1.29E−04] 2.93
Mix II 4.52E−05 [4.21E−05–4.79E−05] 4.94E−05 [3.88E−05–5.67E−05] 1.09

CA – Concentration Addition, CI – Confidence Interval; bold indicates statistical significance between predicted and observed mean;
1) mixture ratios as defined in Table 3.
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itself also showed no effects with the mixture. The three assays, which
consistently failed to detect expected mixture effects, showed different
directions of effects (stimulation/inhibition) for different mixture
components. Finally, most assays detecting specific responses showed
combined effects that were quantitatively close to component-based
mixture effect expectations based on concentration addition. The in-
dependent action concept, however, was the better predictor of the
observed mixture effects for assays detecting apical effects, whereas in
one of the four assays the combined effect observation fell in the range
spanned between concentration addition and independent action pre-
dictions.

4. Discussion

The results of the presented interlaboratory study for two mixtures
are discussed with regard to the data quality, the detectability and
predictability of combined effects and the consequences for the com-
position of panels of bioassays for effect-based monitoring and its in-
terpretation.

4.1. Data quality considerations

A mixture round robin study by Carvalho et al. (2014) showed the
occurrence of effects in various bioassays at concentrations of the in-
dividual components at EQS levels, i.e. concentrations where no ad-
verse biological effects should be expected. To assess whether such
effects are due to predictable combined effects or whether they instead
derive from unpredictable mixture interactions, explicit knowledge of

the components concentration-dependent bioactivity is required.
Moreover, for discriminating the effects of single compounds from those
of a mixture and deciding on possible deviation from prediction, the
experimental design and the response variability play a crucial role and
need to be scrutinized.

Based on these considerations, we included several measures to
ensure that the characterisations of the compound's effects were accu-
rate. Thus, we used independent experimental repeats, adaptive spacing
of concentrations to capture the dynamic effect range and to derive
robust EC estimates, considered physicochemical properties to achieve
soluble concentrations for the components, analytically checked nom-
inal concentrations, provided identical stock solutions of the two mix-
tures for biotesting across the different laboratories, and checked the
stability of stock solutions. Using data from earlier work reported by
Neale et al. (2017b), we used a best fit approach for the concentration-
effect relationship modelling and accounted for inter-experimental
variation and overdispersion. The finding that the logit model (which is
equivalent to the Hill function) proved to be the best fitting model for
assay data that representative of specific responses is in line with an
understanding that receptor-binding as a limiting process should adhere
to the law of mass action (Kenakin, 2015), while for organismic assays
other processes such as kinetics or effect chains may become de-
termining and may thus modify the concentration-effect relationship
which, for example. is then better captured by the asymetrical Weibull
model.

As we had two assays using zebrafish early development observa-
tions (zFET), one that used a microtiter plate format, the other using
glass vials, we compared the findings for the individual compounds and
the mixtures. For three compounds (bisphenol A, diclofenac, and pro-
piconazole) the EC50 were not statistically different (Table S3). Eight of
the other nine compounds and the two mixtures were consistently
shown to be of higher bioactivity in the assay using glass vials, by a
factor ranging between 1.5 and 5.6. As the assay showing higher sen-
sitivity was performed in glass vials as opposed to a plastic microtiter
plate, it seems reasonable to consider systematic differences in the ex-
posure regime as causative, rather than biological variability. Schreiber
et al. (2008) and Riedl and Altenburger (2007) have provided evidence
of systematic differences in EC estimates in systems using different
materials for exposure vessels and it is assumed that sorption to plastic
microtiter plates may constitute a major loss process altering nominal
concentrations for compounds with a log Kow of 3 and higher. Kramer
et al. (2012) have further provided analytical access to quantitatively
determine the different underlying processes. For the selected sub-
stances substantial loss processes could be assumed for all of the com-
pounds except genistein (log Kow 2.3). In our experiments, this was the
only compound showing a lower effect concentration in the microtiter
plate assay. As this study did not target the absolute effect concentra-
tions but rather investigated the assumption of additive mixture effects
in a complex mixture, these differences are of no major concern but
have to be kept in mind, when concluding on environmentally relevant
effect concentrations. For high-throughput biotesting in the future, ei-
ther experimental solutions, or modelling loss processes from com-
pound properties, could be ways to reduce the existing error sources.

A second prominent feature in this study derives from the use of a
uniform mixture stock solution for both mixtures across all bioassays.
This, on the one hand, guaranteed that exactly the same mixture
compositions were tested in each lab. On the other hand, we had to
accept the inaccuracies arising from the use of different lots of chemi-
cals during individual compound and mixture testing or using different
co-solvents. The latter could be excluded by comparing the influence of
DMSO and methanol as co-solvents in their influence on the individual
components effects, e.g. for bisphenol A and genistein in the MELN
assay (data not shown). Solubility issues due to the highly concentrated
stock solutions were not apparent up front for any of the bioassays,
though in hindsight, regarding the specific case of the high salt medium
it seemed plausible for the Microtox assay.

Fig. 2. Examples of observed and predicted mixture responses for (A) apical effect on
zebrafish embryonic development (zFET - glass vial, Mix I) and (B) human MCF-7 cell
based estrogen receptor activation reporter (MELN, Mix II). Mixture effects were pre-
dicted according to CA and IA (only for apical endpoints) (solid line) and are shown with
their respective 95% CIs (dashed line), observed mixture responses are from at least three
independent experiments (dots). CA mixture prediction in (B) was only possible at low
concentrations, here a range of most likely CA mixture responses at higher concentrations
was calculated according to the toxic unit extrapolation method by Scholze et al. (2014)
(grey solid line).
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Finally, we found that the concentration extrapolation approach for
CA predictions for compounds with incomplete concentration-response
curves developed by Scholze et al. (2014) helped to describe the ob-
served mixture effects. Incomplete regression curves pose problems

with the applicability of CA, as the maximally predictable combined
effect level is determined by the lowest maximal effect of a component
in the mixture. The extrapolation approach thus provided confidence
regarding the predictability of combined effects (e.g. Fig. 2b).

Fig. 3. Predicted and observed combined effect responses of Mix I in various bioassays. Mixture effects were predicted according to CA and IA (only for apical endpoints), observed
mixture responses are from at least three independent experiments and indicted by their common best-fit regression model (Fit). Dashed curves show the respective 95% CIs for the
predictions and regression fit. In three cases CA mixture predictions were only possible at low concentrations, here we calculated a range of most likely CA mixture responses at higher
concentrations according to the toxic unit extrapolation method by Scholze et al. (2014). For positive reference compounds please refer to SI, Table S2.
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The plausibility of the derived effect concentrations for the in-
dividual components (Table S3) was in line with expectations of re-
ported data using ToxCast bioassays (comptox.epa.gov; August 2017).
More detailed considerations are provided in the SI.

4.2. Detectability and predictability of combined effects

The comparative assessment between an observed and predicted
mixture response can only provide reliable judgements when both sides
of the comparison as well as the comparison itself are valid and free of
any bias. For the predictions it meant that we repeated the single
substance experiments several times in order to rule out any “day-
specific” outcomes and thus consolidated robust concentration-re-
sponse pattern (“averaging over experiments and time”), with the same
rationale the mixture experiments were repeated and the overall mean
used for the comparison, and technical factors that could have led to a
biased comparison were minimised in the best possible way (e.g.
avoiding the testing of the wrong mixture composition by identical
master solutions). The comparison itself was performed only between
effect (or effect concentrations) that were supported by data (i.e. no
data extrapolations) and quantitative differences confirmed statistically
by considering the uncertainty on both sides of the comparison, i.e.
predictions and observed mixture response. Here we strongly re-
commend to base not only the prediction on repeated experimental
data, but also to repeat the final mixture experiment at least twice to
achieve robust effect estimations on both sides of the comparative as-
sessment.

The mixture effect observations and the modelled concentration-
response functions were compared with the contributions from the in-
dividual components in the mixtures. For the majority of the assay/
mixture combinations these comparisons showed that the effects of the
mixture were indeed larger than any of the mixture components alone.
Thus, we detected true combined effects different from cases where an
individual substance dominates the observed effect, despite the pre-
sence of several other compounds.

The only exception was the Microtox assay, where the concentration
response relationship for chlorophene alone could explain the observed
mixture effect in Mix II while in Mix I the mixture effect appeared lower
than for the chlorophene exposure alone. Multi-component mixtures of
bioactive components have been studied previously using this assay and
have shown, in contrast to the findings here, that combined effects can
be detected and that results were in line with the mixture model ex-
pectations both for similarly and dissimilarly acting components (e.g.
Altenburger et al., 2000; Backhaus et al., 2000). The lower than ex-
pected mixture toxicity found in the Microtox assay for the Mix I is
thought to result from a limited solubility of components as the pre-
dictivity for a mixture effect improved when using a solubility cut-off
corrected for the salting out effect with the Setchenow equation for the
3M salt concentration in the saltwater medium used in the Microtox
assay with the marine bacteria A. fischeri (Escher et al., 2017). The
modelled solubility data are for freshwater and may not be sufficient in
this specific case. As the Microtox assay sensitivity is lower by an order
of magnitude than all other bioassays, this potential problem does not
have to be considered for the other assays.

Observations for seven receptor/cell-based assays, namely AR acti-
vation, GR activation, Ames, Cyp19a1b activation, zfERalpha, and
zfERbeta2 activation detected no or very little combined effects with
the mixtures. For AR activation, GR activation, and the Ames assays
these findings are consistent with the observations that none of the
individual components of the 12 compound mixture would provoke any
substantial effect in the plausible concentration ranges and, further-
more, that the explicit mixture prediction modelling did not calculate
any observable effect for the mixture. For the zf estrogen receptor alpha
and beta2 activity in zebrafish cells, and for the cyp19a1b activation
assays in the transgenic zebrafish the situation was different. For the
zfER responsive in vitro assays, we found deviation from expected

additivity, in particular for the zfERbeta2 assay. Co-occurrence of ac-
tivities heading in opposite directions, i.e. stimulatory and inhibitory,
was suspected. The mixture effect of estrogen receptor activation may
thus be confounded by this phenomenon. A separate in depth in-
vestigation is underway and will be reported separately (Serra et al., in
prep.). The cyp19a1b transgenic assay has been shown to be useful to
assess additive effects of binary (Brion et al., 2012) and multi-
component mixtures (Petersen et al., 2013) of ER agonists. Overall, a
good correspondence has been reported between the cellular responses
measured by zfER responsive in vitro assays and the embryonic
cyp19a1b for single compounds and mixtures (Sonavane et al., 2016; Le
Fol et al., 2017). The lack of estrogenic response observed at the non-
lethal concentrations of the mixtures could also have resulted from the
co-occurrence of activating and inhibiting activities on ER-signalling
pathways, while at higher concentrations the general toxicity observed
on cyp19a1b zebrafish embryos as in the FET assay, expected from the
mixture components diclofenac, propiconazole, TPP, chlorophene, and
triclosan, may have excluded the observation of an estrogenic response.
This argument is supported by the known effect concentration - re-
sponse function from the zFET assays (Table S3c,e). These findings
support including both mechanism-based and apical endpoints for
monitoring multicomponent mixtures.

The oxidative stress response assay for Mix I was greater than the
response predicted by the concentration addition model and correspond
with findings in an earlier mixture study which also showed higher than
expected mixture effects (Escher et al., 2013a). Two interpretations are
possible in this case: The variance in the mixture predictivity for de-
fined mixtures was higher than estimated here and falls into the range
of a factor of 2–3 as previously described, or chemicals whose activity is
masked by cytotoxicity when they are tested alone are contributing to
the mixture effect (Escher et al., 2013a, 2013b).

The question whether the combined effects in a multiple mixture
composed of components with various modes of action and at hetero-
geneous concentrations are still predictable using component-based
mixture models will be discussed first by considering the apical re-
sponses (Table 4). Since Walter et al. (2002) first described a case
where the observed combined effect of a multiple mixture of hetero-
geneous chemicals fell between the mixture effect predictions derived
from CA and IA an assessment dilemma became apparent: The observed
mixture responses can be interpreted as antagonism (effects smaller
than expected) in relation to CA and as synergisms (effects larger than
expected) in relation to IA, a rather unsatisfactory situation. If addi-
tional knowledge is available on the similarity or dissimilarity of modes
of action of the mixture components, a stepwise modelling can improve
the accuracy and precision of the combined effect prediction
(Altenburger et al., 2004, 2005, Ermler et al., 2013). This stepwise
approach involves modelling, first by concentration addition for the
similarly acting components, and subsequently, of the dissimilarly
acting compound groups using independent action (Altenburger et al.,
2004). In environmental mixtures the information on modes of action
for all compounds is, however, not easily available. In this study the
observed mixture responses for the two fish embryo assays and the algal
growth assay in this study fell into this ‘prediction window’ spanned by
concentration addition and independent action, and thus can be inter-
preted as in line with responses expected for a mixture of similarly and
dissimilarly acting compounds. In all cases studied here concentration
addition predicted an effect concentration lower than for independent
action, i.e. the higher combined effect. For the apical assays this also in
all cases accommodated for the experimentally observed worst case
combined effect. This also means, that if one intends to identify mixture
drivers in environmental samples based on available concentrations-
response relationships for components, e.g. through toxic unit sum-
mation, the CA assumption may underestimate the number of relevant
contributions.

For the assays sensitive to more specific responses (Table 5), we
evaluated mixture responses only in relation to CA and not to IA. The
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effects in these assays are receptor-driven, and at the level of receptors
only competition for binding and differences in intrinsic activity are of
importance. For such effect concentration addition provides a reason-
able reference. This idea is supported by our observation that the
combined effects were quantitatively well predicted by concentration
addition. It has to be acknowledged, however, that for higher response
levels, the concentration addition model cannot always be used in a
straightforward manner, due to its limitation to model the concentra-
tion relationship only up to the effect level of the component with the
lowest effect maximum. The advanced extrapolation approach by
Scholze et al. (2014) for such cases was used here and provided evi-
dence that the observed responses were in good agreement with ex-
pected CA (Fig. 3b). As a novel finding of this study we conclude that
seven of the bioassays used here, representing different receptor-
mediated responses, were able to capture expected combined effects
against a background of multiple other compounds with known
bioactivities. We also deduce that confounding factors such as cyto-
toxicity or other interfering biological activities (e.g. overlap between
competitive agonists and antagonists) should be recorded to avoid
mislead.

4.3. Effect detection for mixture comprising multiple modes of action

Looking at the coverage (Fig. 4, Table SI 4) of biological response
across various bioassays, the following picture emerges. For 7 of the 12
compounds a response-specific assay would detect a component of the
mixture at the lowest concentration. For 9 of the 12 components,
however, apical assays, in particular the daphnia assay, are among the
two most sensitive to detect a component from the mixture studies. The
explanation is straightforward, while the assays designed to detect
specific biological effects are expected to capture few components from
the studied mixture (here typically two), the bioassays using apical
effect observation show combined effects from three (Microtox) to
seven (daphnids) components (Table SI 4), thus explaining their ap-
parent sensitivity.

The selection of compounds in this mixture study reflected the
heterogeneity of water contaminants and the diversity of their antici-
pated modes of action (Busch et al., 2016). More detailed reflection of
the plausibility of mode of action specific responses are given in the SI.

While the experimental mixture results cannot proof the occurrence of a
specific mode of action, we confirmed that a compound's specific MoA
can be mirrored by using an adequate receptor-based assay in case of
receptor-transmitted endocrine effects. However, neither do we have
bioassays that capture all known modes of action ready for contaminant
monitoring, nor do compounds always adhere to one specific or even
receptor-related mechanism of action, e.g. Bisphenol A is known to act
via several pathways until leading to an adverse outcome (Goodson
et al., 2015). We also demonstrated that apical effect detection captures
more comprehensively the complexity of mixture contamination
through joint effect description. Therefore, the specific bioassays dis-
cussed here as potentially suitable for monitoring are rather diagnostic
indicator systems for groups of compounds, whereas interpretations
with respect to biological adverse effects need separate research in the
frame of e.g. the AOP concept.

Several suggestions and considerations on the assembly of bioassay
panels for water monitoring purposes have been made in the literature
(e.g. Diamond et al., 2011, Escher and Leusch, 2012, Wernersson et al.,
2015, Di Paolo et al., 2016, Neale et al., 2017a, 2017b, van der Oost
et al., 2017). Mostly, they comprise compilations of available assays
filtered by criteria concerning their practicability (e.g. Kienle et al.,
2015; Schmidt et al., 2017). Given that all mentioned technical re-
quirements can be adequately accounted for as laid out above, the first
question for a panel definition should be whether the monitoring is
targeted at exposure diagnosis or towards ecological effect assessment.
For example, in drinking water assessment the detection of potential
chronic effects on human health such as endocrine, mutagenic, carci-
nogenic or reproductive effects should be emphasised. Effect-based
monitoring would therefore focus on proxies for these, such as receptor-
mediated or adaptive stress response assays. If the monitoring purpose
is to assess complex chemical contamination with regard to protecting
aquatic ecosystems and its services for humans, given the lack of
comprehensive coverage of the relevant modes of action using only
effect-specific bioassays (Busch et al., 2016), bioassays detecting apical
endpoints would be a priority choice.

In summary, we conclude that (i) a modular bioassay panel can
accommodate for different application purposes, and (ii) apical bioas-
says currently continue to have their virtue for panels where compre-
hensive coverage of contaminants and effect qualities is the goal.

Fig. 4. Scaled toxic unit contribution to the concentration
additive mixture effect in the various bioassays displayed
by the indicated effect type (see Table 1) for Mix I; effect
indication - assay assignment from left to right: bio-
transformation 1 - AhR CALUX, biotransformation 2 –
HGN5LN-hPXR, estrogen 1 – MELN; estrogen 2 – ChgH-
GFP; anti-androgen – Anti-MDA-kb2; glucocorticoid – GR
CALUX; oxidative stress – AREc32; metabolism – PPAR-
γUAS-293H; mutagenicity – AMES, bacteria –Microtox; fish
1 - zFET-well plate; fish 2 – zFET-glas vials; invertebrate –
daphnia immobilisation, alga – algal population growth.
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Although apical assays respond to many chemicals present, they give
only limited information on the mode of action. (iii) Reporter gene
assays that target exclusively one specific molecular initiating event or
one key event (e.g. adaptive stress response) will only be responsive to a
limited number of chemicals and therefore cytotoxicity may be a severe
problem as it can mask any specific effects. Therefore, those assays are
only valid if it is assured that they are run at non-cytotoxic con-
centrations. These conclusions are in line with literature suggestions
derived from complex environmental samples testing including waste-
water and surface water (Diamond et al., 2018; Neale et al., 2017a,
2017b).

5. Conclusions

We conclude from this interlaboratory mixture study that it is pos-
sible to decipher combined effects from multiple mixture exposure as
they might occur in water monitoring. Concentration addition provides
a worst case component-based prediction for combined effects on apical
effect endpoints and serves as a reasonable model for receptor-based
responses. Thus, component-based predictions and mass balance com-
parison of chemically determined contaminants and bioanalytical ef-
fects are possible. Such studies require adequate quality controls for
confounding factors such as concomitant cytotoxic effects that may
mask specific effect potencies. Also, exposure regimes in high-
throughput bioassay protocols need to be designed to account for
processes that could lead to loss of bioavailable concentrations. For a
comprehensive effect monitoring of chemicals that are known to occur
in freshwaters, apical effect assays are essential, as we do not yet have
all the methods to specifically account for all or even only the most
relevant modes of action. Assays detecting specific effects lend them-
selves to diagnostic monitoring.
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