

University of Groningen

IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor **Progression**

Sadik, Ahmed; Somarribas Patterson, Luis F; Öztürk, Selcen; Mohapatra, Soumya R; Panitz, Verena; Secker, Philipp F; Pfänder, Pauline; Loth, Stefanie; Salem, Heba; Prentzell, Mirja Tamara

Published in: Cell

DOI:

10.1016/j.cell.2020.07.038

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Sadik, A., Somarribas Patterson, L. F., Öztürk, S., Mohapatra, S. R., Panitz, V., Secker, P. F., Pfänder, P., Loth, S., Salem, H., Prentzell, M. T., Berdel, B., Iskar, M., Faessler, E., Reuter, F., Kirst, I., Kalter, V., Foerster, K. I., Jäger, E., Guevara, C. R., ... Opitz, C. A. (2020). IL411 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell, 182(5), 1252-1270.e34. https://doi.org/10.1016/j.cell.2020.07.038

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Original Article

Head and Neck IMPT probabilistic dose accumulation: feasibility of a 2 mm setup uncertainty setting

Dirk Wagenaar, Roel G.J. Kierkels, Arjen van der Schaaf, Arturs Meijers, Daniel Scandurra, Nanna M. Sijtsema, Erik W. Korevaar, Roel J.H.M. Steenbakkers, Antje C. Knopf, Johannes A. Langendijk, Stefan Both

PII: S0167-8140(20)30770-2

DOI: https://doi.org/10.1016/j.radonc.2020.09.001

Reference: RADION 8502

To appear in: Radiotherapy and Oncology

Received Date: 14 February 2020 Revised Date: 14 August 2020 Accepted Date: 2 September 2020

Please cite this article as: Wagenaar, D., Kierkels, R.G.J., van der Schaaf, A., Meijers, A., Scandurra, D., Sijtsema, N.M., Korevaar, E.W., Steenbakkers, R.J.H., Knopf, A.C., Langendijk, J.A., Both, S., Head and Neck IMPT probabilistic dose accumulation: feasibility of a 2 mm setup uncertainty setting, *Radiotherapy and Oncology* (2020), doi: https://doi.org/10.1016/j.radonc.2020.09.001

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

- Head and Neck IMPT probabilistic dose
- 2 accumulation: feasibility of a 2 mm setup
- ₃ uncertainty setting.
- 4 Authors
- 5 1. Dirk Wagenaar¹ (MSc)
- 6 2. Roel G.J. Kierkels^{1, 2} (PhD)
- 7 3. Arjen van der Schaaf¹ (PhD)
- 8 4. Arturs Meijers¹ (MSc)
- 9 5. Daniel Scandurra¹ (MSc)
- 10 6. Nanna M. Sijtsema¹ (PhD)
- 11 7. Erik W. Korevaar¹ (PhD)
- 12 8. Roel J.H.M. Steenbakkers¹ (PhD)
- 13 9. Antje C. Knopf¹ (PhD)
- 14 10. Johannes A. Langendijk¹ (MD/PhD)
- 15 11. Stefan Both¹ (PhD)

16 17

Affiliations

- Department of Radiation Oncology,
 University Medical Center Groningen,
- 20 University of Groningen, The Netherlands
- 2. Department of Radiation Oncology,
- 22 Radiotherapiegroep, Arnhem/Deventer,
- The Netherlands

2425

Corresponding author's details:

- Dirk Wagenaar, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
- 27 ir.d.wagenaar@umcg.nl
- 28 0652724467

29

30 Financial disclosure:

31 Nothing to disclose

32

33 Running head:

34 Head and Neck IMPT: a 2 mm setup uncertainty

ABSTRACT

36 (MAX. 250 WORDS)

37 Objective

35

- 38 To establish optimal robust optimization uncertainty settings for clinical head and neck cancer (HNC)
- 39 patients undergoing 3D image-guided pencil beam scanning (PBS) proton therapy.
- 40 <u>Methods</u>
- We analyzed ten consecutive HNC patients treated with 70 and 54.25 Gy_{RBE} to the primary and
- 42 prophylactic clinical target volumes (CTV) respectively using intensity-modulated proton therapy
- 43 (IMPT). Clinical plans were generated using robust optimization with 5 mm/3% setup/range
- 44 uncertainties (RayStation v6.1). Additional plans were created for 4, 3, 2 and 1 mm setup and 3%
- range uncertainty and for 3 mm setup and 3%, 2% and 1% range uncertainty.
- 46 Systematic and random error distributions were determined for setup and range uncertainties based
- 47 on our quality assurance program. From these, 25 treatment scenarios were sampled for each plan,
- 48 each consisting of a systematic setup and range error and daily random setup errors. Fraction doses
- 49 were calculated on the weekly verification CT closest to the date of treatment as this was considered
- 50 representative of the daily patient anatomy.
- 51 Results
- 52 Plans with a 2 mm/3% setup/range uncertainty setting adequately covered the primary and
- 53 prophylactic CTV ($V_{95} \ge 99\%$ in 98.8% and 90.8% of the treatment scenarios respectively). The
- 54 average organ-at-risk dose decreased with 1.1 Gy_{RBE}/mm setup uncertainty reduction and 0.5
- 55 Gy_{RBE}/1% range uncertainty reduction. Normal tissue complication probabilities decreased by
- 56 2.0%/mm setup uncertainty reduction and by 0.9%/1% range uncertainty reduction.
- 57 <u>Conclusion</u>
- 58 The results of this study indicate that margin reduction below 3 mm/3% is possible but requires a
- 59 larger cohort to substantiate clinical introduction.

60

Introduction

61

62	The goal of radiotherapy treatment plan robust optimization is to create a deliverable treatment
63	plan which adequately covers the target volume with the lowest dose possible to the most relevant
64	organs at risk. Treatment preparation and execution uncertainties need to be accounted for to avoid
65	undertreating the target.[1] Composite minimax robust optimization (CMRO) is known to be
66	advantageous for pencil beam scanning (PBS) proton therapy as compared to PTV-based treatment
67	planning which is more sensitive to rigid shifts.[2] Conventionally, the isocentric uncertainty setting
68	used in CMRO is determined by margin recipes for X-ray radiotherapy.[3] For example, van Herk
69	calculated the required CTV-PTV margin to treat the clinical target volume (CTV) to 95% of the
70	prescribed dose for 90% of the patients based on the systematic and random isocentric
71	uncertainty.[1,3] However, the risk of undertreating the target should be weighed against the risk of
72	toxicity to find the optimal uncertainty setting.[4] Furthermore, the van Herk formula assumes dose
73	invariance to external and internal movement which does not hold for proton therapy.[3,5–7]
74	Van der Water et al. studied the effect of setup and range uncertainty setting reduction and found a
75	gradual decrease in normal tissue complication probabilities (NTCPs) as uncertainties were
76	reduced.[4] However, their study did not take anatomical changes or treatment uncertainties into
77	consideration as the target is always covered in the nominal scenario.[4] Changes in anatomy can
78	have a large impact on the delivered dose distribution compared to the planned dose
79	distribution.[8–10] These and other results show that uncertainty setting reduction is impactful on
80	patient-reported toxicities. Previous studies in head and neck cancer (HNC) photon therapy reported
81	toxicity reduction after changing the CTV-planning target volume (PTV) margin from 5 mm to 3 mm,
82	but a further reduction to a 2 mm uncertainty setting might be possible without altering the
83	physician prescribed dosimetric parameters.[11,12] By accumulating the dose on diagnostic quality
84	verification CT images, the impact of interfractional anatomy changes can be evaluated and the
85	delivered dose can be estimated more accurately.[8–10,13] Earlier studies focused on dose
86	accumulation incorporating repeated imaging to study the effect of changing anatomy, but these
87	neglected other treatment uncertainties such as inter- and intrafraction motion which could have a
88	large effect on target coverage.[8,9]
89	In addition to anatomical changes, positional and treatment uncertainties have a large effect on the
90	delivered proton therapy dose distribution in and near the target.[5–7] If the probability density
91	distributions of systematic and random positioning and range errors are known, the probability
92	density distribution of dosimetric parameters can be calculated to predict the tumor control
93	probability (TCP) and normal tissue complication probability (NTCP).[14–16] Such approaches have
94	been extensively studied for probabilistic treatment planning as a way to incorporate
95	uncertainties.[6,17,18] In this study we use a probabilistic approach to retrospectively estimate the
96	dose in different treatment scenarios so that a representative estimation of the actually given dose
97	can be determined.
98	The aim of this study is to establish whether CMRO uncertainty settings can be reduced below 3 mm
99	for HNC IMPT treatments using probabilistic dose accumulation. The probabilistic dose accumulation

ent treatment scenarios incorporating the systematic and random setup and

MATERIALS AND METHODS

102

103	Patients and treatment
104	The study population was composed of the first ten consecutive HNC patients treated with PBS
105	intensity-modulated proton therapy (IMPT) at our institute. Patient characteristics are further
106	described in Table 1. In the Netherlands, patients are selected for proton therapy using model-based
107	selection. In this approach, proton therapy is applied if the $\Delta NTCP$ between the proton and photon
108	treatment plans exceeds a certain indication-specific threshold. [14] The Δ NTCP thresholds used for
109	HNC patients are 10% for a single grade II complication, 15% for the combined total of two grade II
110	complications, or 5% for a single grade III complication.[14]
111	Patients were treated with 70 Gy_{RBE} to the primary CTV and 54.25 Gy_{RBE} to the prophylactic CTV in 35
112	fractions with 5 fractions per week using a constant relative biological effectiveness (RBE) factor of
113	1.1. Patients were immobilized using a 5-point mask (HP Pro, Orfit Industries, Wijnegem, Belgium).
114	For each fraction, positioning correction vectors were determined by matching daily cone-beam CT
115	(CBCT) images to the planning CT and applied using a 6-D robotic table capable of yaw, pitch and roll
116	corrections. IMPT treatments were delivered at our proton treatment facility (Proteus ®Plus, IBA,
117	Ottignies-Louvain-la-Neuve, Belgium). Changes in anatomy were monitored with weekly offline
118	verification CTs (Somatom AS Open, Siemens, München, Germany) with the patient immobilized in
119	treatment position.
120	Treatment planning
121	Clinical treatment plans were generated using CMRO with a 3% range and 5 mm setup uncertainty in
122	the treatment planning system (TPS) (Raystation v6.1, RaySearch Laboratories, Stockholm, Sweden).
123	During optimization, 7 different isocenter shifts (i.e. no shift or a positive or negative shift along one
124	of the three axes) and two (i.e. positive or negative) density shifts are considered. The worst target
125	dose in these 14 scenarios is optimized.
126	Target coverage was assessed using the voxel-wise minimum robustness (multi-scenario) evaluation
127	approach outlined in a recent publication describing the Dutch consensus for proton plan
128	evaluation.[19] During evaluation, 14 different isocenter shifts (i.e. a positive or negative shift along
129	each of the three axes and along each diagonal) and two density shits were considered resulting in a
130	total of 28 scenario's.[19] The voxel-wise minimum of these 28 scenarios was used to assess robust
131	target coverage, where the coverage criteria was a V ₉₅ of both CTVs of at least 98%. Eight patients
132	were treated with a four-beam setup with gantry angles between 40-60, 160, 195-200 and 295-320
133	degrees. For one patient, treated for left-sided retromolar trigonum squamous cell carcinoma, the
134	right-sided posterior beam was omitted. Another patient, treated for left-sided tonsillar carcinoma,
135	was treated with unilateral irradiation with three beams angled at 45, 90 and 135 degrees.
136	Treatment plans with various setup and range uncertainty settings are required to conduct this
137	study. These treatment plans with various uncertainty settings were derived from the clinical plan in
138	an automatic process. Therefore in the text we refer to these plans as adjusted treatment plans. The
	plans were generated in a two-step process (Figure 1). First the dose distribution

er setup and range uncertainty is predicted. Second, this predicted dose

rted into a deliverable adjusted treatment plan using a voxel-based dose

142 143 144	mimicking optimization approach. [20,21] This process ensures consistent treatment plan quality in terms of prioritization of the organs at risk to spare, while keeping the physician prescribed tumor coverage unaltered.
145 146 147 148 149 150 151	Additionally, one planner-generated treatment plans per patient was created to validate that the automatic adjustment of treatment plans gives similar results as conventionally created treatment plans. The planner-generated treatment plans were created with a 3 mm setup and 3% range uncertainty. These planner-generated treatment plans were compared to the adjusted treatment plans with a 3 mm setup and 3% range uncertainty in terms of the dose given to at least 98% of the target (D_{98}) in the voxel-wise minimum dose distribution and the dose-fall off outside the CTV in the planned scenario.
152 153	Using the automated approach, we generated seven adjusted treatment plans per patient with various setup and range uncertainty settings and one planner-generated treatment plan per patient.
154	Error distributions
155 156 157 158 159	The distributions of the intrafraction shifts were tested for normality by visually inspecting their quantile-quantile (Q-Q) plots and tested for a systematic component using a two-sided Student t-test with an α of 0.05. All other considered error distributions were assumed to be Gaussian. The accuracy of the onboard CBCT imaging system isocenter and 6-D robotic table shifts were assessed based on the results of our comprehensive machine QA program.
160 161 162 163 164 165 166 167 168 169 170	To estimate the intrafraction isocentric displacement, CBCTs before and after treatment were analyzed. For these patients, CBCTs were made before and after treatment for 41 fractions in total (i.e. 4.1 on average per patient) as part of the post-treatment position verification. The post-fraction CBCTs were matched using rigid registration to estimate the intrafraction isocentric displacement in three dimensions. The distribution of intrafraction displacements was taken as the random setup error distribution and statistically tested for a systematic component. The onboard CBCT and 6-D robotic couch error were quadratically summed and taken as the systematic setup error with an additional 0.5 mm (one standard deviation (SD)) in all directions to account for potentially neglected errors. The magnitude of the residual error was a conservative estimation based on our expectation of unconsidered systematic errors such as intrafraction rotations and methodological uncertainties such as deformable image registration errors.
171 172 173 174 175 176	Range errors are systematic in nature and occur depending on tissue type. Common clinical practice is to account for a $2.4\% + 1.0$ mm range uncertainty error during treatment optimization.[22,23] This recipe was shown to be equal to two SDs in a recent study analyzing the residual range errors in proton radiography validation of our CT calibration curve.[23] The SD of $1.2\% + 0.5$ mm was converted to a patient-specific percentage by dividing the absolute component by the monitor unit weighted average range of the clinical treatment plan.
177	Probabilistic dose accumulation
178 179	The error distributions (i.e. CBCT isocenter, robotic table shifts, intrafraction motion, range uncertainty and a residual error) were applied to weekly verification images to simulate the
View	on of dose distributions that would be delivered to the patient when treated atment plans. Similar to a previous study, we define a single treatment scenario

atment plans. Similar to a previous study, we define a single treatment scenario

- 182 as the accumulated dose of a complete treatment where the random errors have been sampled 183 from their probability density distributions for each fraction. [24] For each treatment plan, 25 184 treatment scenarios were calculated. The workflow of a single treatment scenario calculation is 185 illustrated in figure 2. Seven patients had seven verification CTs and three patients had six verification CTs available. One systematic setup (originating from the CBCT isocenter, robotic table 186 187 shifts and a residual error) and one systematic range error (originating from proton radiography 188 measurements) were sampled from the error distributions described in the previous subsection. 189 Daily fraction doses were calculated on the weekly verification CT closest to the date of treatment as 190 this was considered to be representative of the patient anatomy of that fraction. In addition to the 191 systematic errors, daily fraction dose calculations included a random setup error (originating from the intrafraction motion). The weekly verification CTs were mapped to the planning CT using a 192 193 deformable image registration technique previously described by Weistrand et al.. [25] Using this, 194 the daily fraction doses were mapped to the planning CT and summed, resulting in an estimated 195 delivered dose distribution for that treatment scenario calculation. 196 The sampled errors were different for each treatment scenario calculation but identical between adjusted treatment plans. A single treatment scenario calculation consisted of 35 fraction dose 197 198 calculations, each treatment plan was simulated 25 times, each patient had 7 adjusted treatment 199 plans with different uncertainty optimization settings resulting in 61.250 fractional dose calculations 200 in total. Doses were calculated within a 1.0% statistical uncertainty with 3x3x3 mm³ dose voxels 201 using the Monte Carlo dose engine integrated in the TPS. Statistical analysis 202 203 In our clinical practice, a target coverage criterion of V_{95} of at least 98% in the voxel-wise minimum 204 dose distribution is applied during treatment. [19] The required coverage of the delivered dose 205 distribution should be more than 98% as the coverage in the voxel-wise minimum dose distribution 206 is less favorable than any single scenario, but less than 100% as this would include clinically 207 irrelevant volumes. When evaluating the delivered dose, a 90% pass-rate is typically accepted since 208 accounting for all possible error scenarios would result in overly large uncertainty settings.[3] In this 209 study, we defined the delivered dose criterion as $V_{95} \ge 99\%$ which should be met for at least 90% of 210 the treated patient population. 211 The target dose was evaluated in terms of the average V₉₅ and the fraction of scenarios which met 212 the coverage criteria of $V_{95} \ge 99\%$ for the primary and prophylactic CTVs. Target coverage was
- 213 further reported in terms of the average tumor control probability (TCP), calculated using a TCP
- 214 model by Luhr et al..[16] Normal tissue dose was evaluated in terms of the mean dose to OARs and
- the average NTCP values for xerostomia, grade 2-4 dysphagia, and tube feeding 215
- 216 dependence.[14,15]The TCP is calculated based on the DVH in the three regions of the target (i.e.
- 217 the gross tumor volume (GTV), the primary CTV excluding the GTV and the prophylactic CTV
- 218 excluding the primary CTV). The sensitivity of the TCP to underdosage of each target region is based
- 219 on the rate of recurrences in that target region. We chose the other parameters used in the TCP
- 220 calculation identical to the estimations in the model publication for HNC, which were a tumor
- 221 control dose D_{50} of 70 Gy_{RBE} and slope χ_{50} of 1.5.[16] The proportion of recurrences was taken from

del which was based on a study by Due et al who found that the recurrences in olumes were 82% for the GTV, 16% for the remainder of the primary CTV and er of the prophylactic CTV.[16,26] Due to the low number of recurrences in the

225 prophylactic CTV, the TCP model is less sensitive to underdosage of the prophylactic CTV. An 226 additional analysis is performed, also using the TCP model by Luhr et al., but using the recurrence rates of 51.3%, 29.4% and 19.3% for the GTV, the primary CTV and the prophylactic CTV respectively 227 228 based on the proportion of recurrences reported to occur in these structures after IMRT in three 229 centers from a recent study. [27] 230 Insufficient data is available to make an accurate substantiated estimate of D₅₀ which has a large impact on the calculated TCP. Therefore, the calculated TCP does not reflect our clinical results but 231 232 can be taken as a relative measure to compare the expected effectiveness of different target dose 233 distributions. At these settings, a homogenous dose of 70 Gy_{RBE} to the both CTVs yields a TCP of 50% 234 and a 0.4 Gyrbe dose reduction results in a 1.0% point TCP reduction. 235 The averages of target V₉₅, mean OAR dose, NTCP and TCP were calculated for all patients and 236 simulations which were then tested for statistical significance by calculating two-tailed p-values 237 using linear regression analysis (R v3.5.1, R Foundation, Vienna, Austria). The statistical significance 238 was determined after accounting for multiple testing using Bonferroni's correction.[28] Differences 239 were considered statistically significant if p < 0.025 (α = 0.05/2 parameters) for target dose, p < 240 0.0055 ($\alpha = 0.05/11$ parameters) for OAR dose, p < 0.013 ($\alpha = 0.05/4$ parameters) for NTCPs and p < 241 0.050 ($\alpha = 0.05/1$ parameter) for TCP.

RESULTS

242

- 243 The adjusted treatment plans with a 3-mm setup uncertainty created using dose mimicking optimization resulted in a slightly higher D_{98} of the primary CTV (from 67.0 to 67.1 Gy_{RBF} , p = 0.82) 244 245 and the prophylactic CTV (from 52.1 to 52.7 Gy_{RBE} , p = 0.19) in the voxel-wise minimum dose 246 distribution compared to the planner-generated treatment plans with identical uncertainty settings 247 (figure S1). On average, the OAR dose was 0.1 Gy_{RBE} lower for the adjusted treatment plans with 248 smaller uncertainty settings, but this was not statistically significant (p = 0.85) (figure S1). 249 The systematic component of the intrafraction motion derived from the pre and post-treatment 250 CBCTs was not statistically significant (p = 0.57, 0.46 and 0.69 for lateral, longitudinal and height 251 respectively) (figure S2). The intrafraction motion was therefore considered as random with a 0.7 252 mm SD in each direction. The error of the onboard CBCT imaging system isocenter and 6-D robotic 253 couch translation were found to be 0.4 and 0.3 mm (1 SD) respectively. This, together with the 0.5 254 mm residual error resulted in a 0.7 mm systematic setup error and a 0.7 mm random setup error at 255 the isocenter (one SD, all directions). The patient-specific range error distribution SD ranged from 256 1.6% to 1.8%.
- The results of the treatment scenarios for all adjusted treatment plans are both described below and shown in table 2.
- Target coverage and TCP values reduced with smaller setup and range uncertainties (figure 3).
- Adjusted treatment plans with a 5, 4, 3 and 2mm setup and 3% range uncertainties met the target 00% of simulations $V_{95} \ge 99\%$ for both CTVs. When reducing the setup uncertainty

1 mm the fraction of simulations meeting the target coverage criteria was to 74.8% for the primary CTV and from 90.8% to 70.8% for the prophylactic

- 264 CTV. The lower dose to the CTVs resulted in a TCP reduction of 0.2%/mm setup uncertainty
- 265 (p=0.013) and 0.1%/% range uncertainty (not significant). Changing the TCP model to use the
- 266 recurrence rates found by another study resulted in the same values for TCP reduction as a function
- of setup and range uncertainty setting (Figure S3). [27]
- The average dose to all OARs was reduced linearly by 1.1 Gy_{RBE} /mm setup uncertainty (min = 0.6
- Gy_{RBE}/mm , max = 1.4 Gy_{RBE}/mm) and 0.5 Gy_{RBE} /% range uncertainty (min = 0.1 Gy_{RBE} /%, max = 1.3
- 270 Gy_{RBE}/%) (figure 4). The dose differences translated into an NTCP reduction of 1.0%/mm (p<0.001),
- 271 0.7%/mm (p<0.001) and 0.2%/mm (p<0.001) setup uncertainty and 0.4%/% (not significant), 0.5%/%
- 272 (not significant) and 0.1%/% (p<0.001) range uncertainty for xerostomia, grade 2-4 dysphagia and
- tube feeding dependence respectively.

DISCUSSION

274

- 275 In this study, we found a $V_{95} \ge 99\%$ for the primary and prophylactic CTVs for over 90% of the
- treatment scenarios for a 2 mm setup uncertainty or larger. We found a small decrease of target
- dose which resulted in a TCP reduction of 0.2%/mm setup uncertainty and 0.1%/% range
- 278 uncertainty. The V₉₅ of all adjusted treatment plans was lower for the prophylactic CTV than for the
- 279 primary CTV which may be caused by the larger size and anatomical location of the prophylactic CTV,
- 280 making its coverage more sensitive to rotations and anatomical changes. As the recurrence rates of
- the GTV and primary CTV are higher compared to that of the prophylactic CTV, decreased coverage
- of the prophylactic CTV may be clinically less relevant. [16,26] Ideally, reduction of the setup or range
- 283 uncertainty setting of the robust optimization is performed by weighing the benefit in toxicity
- against the cost in tumor control.
- 285 In our study, we only found a marginal effect on TCP calculated according to Luhr et al. even when
- lowering the setup uncertainty to 1 mm during treatment planning optimization.[16] The TCP is
- 287 calculated based on the DVH in the three regions of the target (i.e. the GTV, the primary CTV
- 288 excluding the GTV and the prophylactic CTV excluding the primary CTV). The impact of underdosage
- of different regions is based on the rate of recurrences in those regions; most recurrences occur in
- 290 the GTV. As a result, the TCP model is most sensitive to underdosage of the GTV and therefore, the
- TCP is not severely impacted by reducing the setup or range uncertainty as underdosage is most
- 292 likely to occur in the GTV-CTV margin and the prophylactic CTV (table 2). The TCP model also
- depends on the proportion of recurrences occurring in the different sub-volumes. Therefore we
- redid the analysis with the same TCP model but with the proportions of recurrences found in a
- recent study, but this change did not impact our results. [27] While the found differences in TCP
- were small, the model was calibrated with the conservative assumption that the TCP is 50% for a
- 297 homogeneous dose of 70 Gy_{RBE} to the CTV. In practice, the TCP values vary based on patient
- 298 characteristics such as p16/HPV positivity which would result in a flatter TCP slope and therefore
- 299 even smaller TCP differences.[29]
- 300 A minor increase in the TCP of the GTV at the last decimal level was observed when the setup
- uncertainty decreases from 2mm to 1 mm (Table 2). The magnitude of change is trivial and can be
- 202 caused by a random component during Monte Carlo optimization and calculation. Nevertheless, the

for these setup uncertainty settings and this variation has no impact on our

which washes out some under- and overdosage.[30] Therefore, we chose to apply a 99% coverage as a more stringent criterion to CTV coverage in the estimated actually given dose distribution. If a 98% coverage criteria would have been applied, a setup uncertainty as low as 1 mm would pass for 90% of the treatment scenarios (Figure S4). The average OAR dose decreased by 1.1 Gy _{RBE} /mm setup and 0.5 Gy _{RBE} /% range uncertainty resulting in a summed NTCP reduction of 2.0%/mm setup and 0.9%/% range uncertainty. The relation with the range uncertainty setting was not shown to be statistically significant for all tested OARs and NTCP models. The impact on NTCP per 1 mm setup uncertainty reduction was about equal to that of 2% range uncertainty reduction. These results indicate that the setup uncertainty as a higher impact on non-target dose and toxicities than the range uncertainty, indicating the reducing setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4]. This study found a 0.59%/mm (unilateral) and 1.62%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions	305 306 307 308 309	While TCP may be related more directly to local control, DVH parameters are used to asses target coverage in our clinical practice. In our study, we considered a V_{95} of 99% adequate for coverage of the CTV for 90% of the treatment scenarios. However, no clear coverage criterion exists for the actually given dose to the CTV. A V_{95} of 98% is typically aimed for when evaluating the nominal dose to the PTV.[1] However, dose fractionation will cause dose gradients to be less steep (i.e. "blurring"),
of the treatment scenarios (Figure S4). The average OAR dose decreased by 1.1 Gy _{ABE} /mm setup and 0.5 Gy _{ABE} /% range uncertainty resulting in a summed NTCP reduction of 2.0%/mm setup and 0.9%/% range uncertainty. The relation with the range uncertainty setting was not shown to be statistically significant for all tested OARs and NTCP models. The impact on NTCP per 1 mm setup uncertainty reduction was about equal to that of 2% range uncertainty reduction. These results indicate that the setup uncertainty has a higher impact on non-target dose and toxicities than the range uncertainty, indicating the reducing setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treat	310 311	which washes out some under- and overdosage.[30] Therefore, we chose to apply a 99% coverage as a more stringent criterion to CTV coverage in the estimated actually given dose distribution. If a 98%
resulting in a summed NTCP reduction of 2.0%/mm setup and 0.9%/% range uncertainty. The relation with the range uncertainty setting was not shown to be statistically significant for all tested OARs and NTCP models. The impact on NTCP per 1 mm setup uncertainty reduction was about equal to that of 2% range uncertainty reduction. These results indicate that the setup uncertainty has a higher impact on non-target dose and toxicities than the range uncertainty, indicating the reducing setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our stud		
relation with the range uncertainty setting was not shown to be statistically significant for all tested OARs and NTCP models. The impact on NTCP per 1 mm setup uncertainty reduction was about equal to that of 2% range uncertainty reduction. These results indicate that the setup uncertainty has a higher impact on non-target dose and toxicities than the range uncertainty, indicating the reducing setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity,[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment s		
OARs and NTCP models. The impact on NTCP per 1 mm setup uncertainty reduction was about equal to that of 2% range uncertainty reduction. These results indicate that the setup uncertainty has a higher impact on non-target dose and toxicities than the range uncertainty, indicating the reducing setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is ty		
to that of 2% range uncertainty reduction. These results indicate that the setup uncertainty has a higher impact on non-target dose and toxicities than the range uncertainty, indicating the reducing setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification s		
higher impact on non-target dose and toxicities than the range uncertainty, indicating the reducing setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al. [4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including		
setup uncertainty is of a higher priority than range uncertainty. Currently, we are investigating this further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would		
further based on daily volumetric imaging and proton radiography for HNC patients treated with PBS in our clinic. The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al. [4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scen		
The impact of robustness parameters on NTCP values was previously investigated in a planning comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.11%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan ada		
comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4] This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for		
This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for	323	The impact of robustness parameters on NTCP values was previously investigated in a planning
dysphagia and a 0.11%/% (unilateral) and 0.06%/% (bilateral) range uncertainty reduction for dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for	324	comparison study in 20 oropharyngeal cases treated with IMPT therapy by van de Water et al.[4]
dysphagia. These results are similar to the average dysphagia probability reduction found in this study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for leaves the integration and the patients into footies and the patients and the patients are the patients.	325	This study found a 0.59%/mm (unilateral) and 1.82%/mm (bilateral) setup uncertainty reduction for
study of 1.0%/mm setup uncertainty and 0.1%/% range uncertainty. Navran et al. investigated the clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lawer margins as it prevents underdosage by compensating for anatomical changes. Fourth, the		
clinical impact of reducing the CTV-PTV margin retrospectively after reducing their clinical PTV margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for		
margin for X-ray therapy from 5 mm to 3 mm and found a reduction in the rate of grade 2 xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lawar margine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
xerostomia (4.2%), grade ≥2 dysphagia (9.4%) and tube feeding dependence (11.4%).[11] These differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lower macraine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
differences are notably higher than the calculated reductions from our study which could be partially explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for		
explained by the fact that the use of retrospective data does not rule out contributions of other time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lower margins as it prevents underdosage by compensating for anatomical changes. Fourth, the		
time-dependent factors to the decrease in toxicity.[11] Another influencing factor could be that the patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for		
patients from the study by Navran et al. were treated with X-ray therapy where the PTV margin may have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for		
have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31] Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for		
Our study has some limitations as not all errors could be fully integrated into the treatment scenario calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for		
calculation. First, the analysis was done entirely on verification CT images but positioning is typically better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lower margine as it prevents underdosage by compensating for anatomical changes. Fourth, the	336	have a larger impact on toxicity due to the larger low and medium dose-bath.[11,31]
better at the treatment room because of the use of various positioning verification systems leading to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lower margine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
to an overestimation of the variability in treatment positioning. Second, including more patients would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lover margine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
would be beneficial as it would include a wider range of anatomical changes but would require a substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lower margine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
substantial time investment. This was partly alleviated by evaluating multiple treatment scenarios on ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lower margine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
ten patients, which allowed 250 different treatment scenarios to be calculated. Third, treatment plan adaptations were not taken into consideration and could lead to better target coverage for lower margine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
plan adaptations were not taken into consideration and could lead to better target coverage for lower margine as it prevents underdosage by compensating for anatomical changes. Fourth, the		
24E lower margins as it prevents underdosage by compensating for anatomical changes. Fourth, the		•
vive determined only at the insertant introfraction mation may have had a		
		use determined only at the incorporation introfraction meeting may have had a

nt if more scans were analyzed per patient, while deformable image registration

9

348 349 350	errors between the planning and verification CTs may have occurred. Lastly, earlier studies showed that the average deformation error is in the order of a millimeter, but this deformation error was present for all adjusted treatment plans and therefore does not bias the results.[25,32]
351 352 353 354 355 356	The isocentric intrafraction motion found in our study was normally distributed with a standard deviation of 0.7 mm in each direction. This is relatively small compared to a recent study by Bruijnen et al. investigating the maximum tumor motion using MR in 84 patients who found the 95 th percentile of the intrafraction motion to be up to 2.4 mm.[33] In our study, intrafraction motion was only recorded at the isocenter potentially leading to different results. In the study by Bruijnen et al., larynx patients had the largest intrafraction motion which could also explain the differences in our
357	results as no larynx patients were included in this study.[33]
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375	Several measures could improve the treatment accuracy which could further improve these results. A large part of the systematic setup error was the 0.5 mm standard deviation in each direction to account for potentially neglected errors. These errors include delineation errors, registration accuracy and intrafraction deformations. The delineation error was already kept to a minimum as at our institution the target delineation for every patient is evaluated by the entire HNC team which includes not only the HNC radiation oncologists but also a HNC radiologist. In this way, interphysician delineation variability is accounted for in the target delineation process itself. By improving deformable image registration accuracy and the intrafraction motion assessment, the residual error used in the analysis can be reduced, resulting in smaller shifts and better coverage. Moreover, as more experience is gained, the interfractional motion is expected to decrease due to improved immobilization and treatments are expected to become more robust to motion due to improvements in treatment planning and plan adaptations. Lastly, optimizing patient positioning to minimize the dose perturbation can improve target coverage without increasing the setup uncertainty setting.[34] Future work on estimation of stopping power ratios using dual-energy CT can help reduce the range errors found in proton radiography and reduce the required range uncertainty setting.[23,35] Additionally, future work should be extended to photon therapy where both robust optimization and a probabilistic assessment of target coverage should be used to further improve treatment.[36]
375 376	This is the first study to incorporate anatomical changes and systematic and random setup and range
377	uncertainties to determine the estimated delivered dose by means of dose mapping and
378	accumulation using longitudinal CT imaging in IMPT HNC patients. All errors were determined for the
379	clinical workflow for the patients under investigation such as intrafraction motion assessments, and
380	the comprehensive machine quality assurance results of the period of treatment. Note that the use
381	of automated adjusted treatment plans is not required for clinical implementation as planner-
382	generated treatment plans were of similar quality. The methodology used in this study offers a more
383	patient outcome driven approach compared to only considering the risk of missing the target as the
384 385	results of different margins were evaluated in terms of clinically relevant endpoints such as TCP and NTCP.
386 387	The results of this study indicate a 2 mm/3% setup and range uncertainty is sufficient for optimizing oropharynx HNC robust treatment plans when a 5-point immobilization mask and 6D couch are

ction with daily CBCT patient alignment. While a larger cohort is needed for

10

clinical adoption, the results indicate that future work will be able to substantiate a 2 mm setup uncertainty setting for HNC IMPT.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Herman Credoe for creating the planner-generated treatment plans to validate the fully automated dose mimicking optimization tool.

394

391

REFERENCES

395

396 [1] ICRU. ICRU 83 Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated 397 Radiation Therapy (IMRT). vol. 10. 2010. https://doi.org/10.1093/jicru/ndq025. 398 [2] Fredriksson A, Bokrantz R. A critical evaluation of worst case optimization methods for robust 399 intensity-modulated proton therapy planning. Med Phys 2014;41:081701. 400 https://doi.org/10.1118/1.4883837. 401 [3] van Herk M, Remeijer P, Rasch C, Lebesque J V. The probability of correct target dosage: 402 dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat 403 Oncol 2000;47:1121-35. https://doi.org/10.1016/S0360-3016(00)00518-6. 404 [4] van de Water S, van Dam I, Schaart DR, Al-Mamgani A, Heijmen BJM, Hoogeman MS. The 405 price of robustness; impact of worst-case optimization on organ-at-risk dose and 406 complication probability in intensity-modulated proton therapy for oropharyngeal cancer 407 patients. Radiother Oncol 2016;120:56-62. https://doi.org/10.1016/j.radonc.2016.04.038. 408 [5] Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol 2008;53:1043-409 410 56. https://doi.org/10.1088/0031-9155/53/4/015. [6] Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of IMPT treatment 411 412 plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys 2009;36:149-63. https://doi.org/10.1118/1.3021139. 413 414 [7] van der Voort S, van de Water S, Perkó Z, Heijmen B, Lathouwers D, Hoogeman M. 415 Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy 416 for Oropharyngeal Cancer Patients. 2016;95:163–70. 417 https://doi.org/10.1016/j.ijrobp.2016.02.035. 418 [8] Houweling AC, Crama K, Visser J, Fukata K, Rasch CRN, Ohno T, et al. Comparing the 419 dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients. Phys Med Biol 2017;62:3051-64. 420 421 https://doi.org/10.1088/1361-6560/aa6419. 422 [9] Szeto YZ, Witte MG, van Kranen SR, Sonke J-J, Belderbos J, van Herk M. Effects of anatomical 423 changes on pencil beam scanning proton plans in locally advanced NSCLC patients. Radiother 424 Oncol 2016;120:286–92. https://doi.org/10.1016/j.radonc.2016.04.002. 425 [10] Meijers A, Jakobi A, Stützer K, Guterres Marmitt G, Both S, Langendijk JA, et al. Log file-based 426 dose reconstruction and accumulation for 4D adaptive pencil beam scanned proton therapy 427 in a clinical treatment planning system: Implementation and proof-of-concept. Med Phys 2019. https://doi.org/10.1002/mp.13371. 428 429 [11] Navran A, Heemsbergen W, Janssen T, Hamming-Vrieze O, Jonker M, Zuur C, et al. The impact 430 of margin reduction on outcome and toxicity in head and neck cancer patients treated with 431 image-guided volumetric modulated arc therapy (VMAT). Radiother Oncol 2019;130:25–31. 432 https://doi.org/10.1016/j.radonc.2018.06.032. 433 Chen AM, Farwell DG, Luu Q, Donald PJ, Perks J, Purdy JA. Evaluation of the Planning Target [12] 434 Volume in the Treatment of Head and Neck Cancer With Intensity-Modulated Radiotherapy: 435 What Is the Appropriate Expansion Margin in the Setting of Daily Image Guidance? Int J

View PDF

436

ndsay PE, Brock KK, Deasy JO, Tomé WA. Accurate accumulation of dose for lerstanding of radiation effects in normal tissue. Int J Radiat Oncol Biol Phys

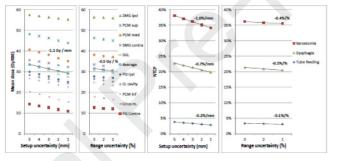
Radiat Oncol 2011;81:943–9. https://doi.org/10.1016/j.ijrobp.2010.07.017.

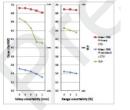
439 2010;76:S135-9. https://doi.org/10.1016/j.ijrobp.2009.06.093. 440 [14] Landelijk Platform Protonentherapie, Protonentherapie LP. Landelijk Indicatie Protocol 441 Protonen Therapie Hoofd-halstumoren. 2017. 442 Wopken K, Bijl HP, van der Schaaf A, van der Laan HP, Chouvalova O, Steenbakkers RJHM, et [15] 443 al. Development of a multivariable normal tissue complication probability (NTCP) model for 444 tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck 445 cancer. Radiother Oncol 2014;113:95–101. https://doi.org/10.1016/j.radonc.2014.09.013. 446 [16] Lühr A, Löck S, Jakobi A, Stützer K, Bandurska-Luque A, Vogelius IR, et al. Modeling tumor 447 control probability for spatially inhomogeneous risk of failure based on clinical outcome data. Z Med Phys 2017;27:285–99. https://doi.org/10.1016/j.zemedi.2017.06.003. 448 Bohoslavsky R, Witte MG, Janssen TM, van Herk M. Probabilistic objective functions for 449 [17] 450 margin-less IMRT planning. Phys Med Biol 2013;58:3563–80. https://doi.org/10.1088/0031-9155/58/11/3563. 451 452 Bangert M, Hennig P, Oelfke U. Analytical probabilistic modeling for radiation therapy [18] 453 treatment planning. Phys Med Biol 2013;58:5401-19. https://doi.org/10.1088/0031-454 9155/58/16/5401. 455 [19] Korevaar EW, Habraken SJM, Scandurra D, Kierkels RGJ, Unipan M, Eenink MGC, et al. 456 Practical robustness evaluation in radiotherapy - A photon and proton-proof alternative to PTV-based plan evaluation. Radiother Oncol 2019. 457 458 https://doi.org/10.1016/j.radonc.2019.08.005. 459 [20] Kierkels RGJ, Fredriksson A, Both S, Langendijk JA, Scandurra D, Korevaar EW. Automated 460 robust proton planning using dose-volume histogram-based mimicking of the photon reference dose and reducing organ at risk dose optimization. Int J Radiat Oncol Biol Phys 461 2018;103:251-8. https://doi.org/10.1016/j.ijrobp.2018.08.023. 462 463 [21] Fredriksson A. Automated improvement of radiation therapy treatment plans by optimization 464 under reference dose constraints. Phys Med Biol 2012;57:7799–811. https://doi.org/10.1088/0031-9155/57/23/7799. 465 Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, et al. Relative 466 [22] 467 biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol 2002;53:407-21. https://doi.org/10.1016/S0360-3016(02)02754-2. 468 Meijers A, Free J, Wagenaar D, Deffet S, Knopf AC, Langendijk JA, et al. Validation of the 469 [23] 470 proton range accuracy and optimization of CT calibration curves utilizing range probing. Phys Med Biol 2020;65:03NT02. https://doi.org/10.1088/1361-6560/ab66e1. 471 472 [24] Tilly D, Ahnesjö A. Fast dose algorithm for generation of dose coverage probability for 473 robustness analysis of fractionated radiotherapy. Phys Med Biol 2015;60:5439–54. 474 https://doi.org/10.1088/0031-9155/60/14/5439. 475 Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in 476 radiotherapy. Med Phys 2015;42:40-53. https://doi.org/10.1118/1.4894702. 477 [26] Due AK, Vogelius IR, Aznar MC, Bentzen SM, Berthelsen AK, Korreman SS, et al. Recurrences 478 after intensity modulated radiotherapy for head and neck squamous cell carcinoma more 479 likely to originate from regions with high baseline [18F]-FDG uptake. Radiother Oncol 480 2014;111:360-5. https://doi.org/10.1016/j.radonc.2014.06.001. R, Hansen CR, Grau C, Samsøe E, Johansen J, Petersen JBB, et al. Local

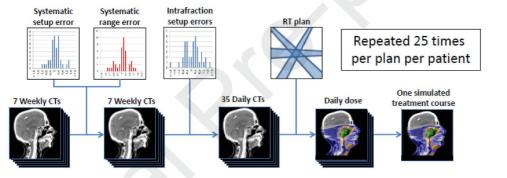
fter curative IMRT for HNSCC: Effect of different GTV to high-dose CTV margins.

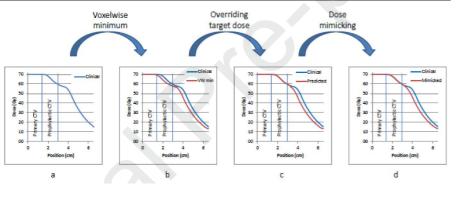
col 2018;126:48–55. https://doi.org/10.1016/j.radonc.2017.11.024.

484 485	[28]	Bonferroni CE. Statistical theory of classes and probability calculus. Publ R High Inst Econ Commer Sci Florence 1936;8:3–62.
486 487 488	[29]	Psyrri A, Rampias T, Vermorken JB. The current and future impact of human papillomavirus on treatment of squamous cell carcinoma of the head and neck. Ann Oncol 2014;25:2101–15. https://doi.org/10.1093/annonc/mdu265.
489 490 491	[30]	van Herk M, Witte M, van der Geer J, Schneider C, Lebesque J V. Biologic and physical fractionation effects of random geometric errors. Int J Radiat Oncol Biol Phys 2003;57:1460–71. https://doi.org/10.1016/j.ijrobp.2003.08.026.
492 493 494	[31]	Arts T, Breedveld S, de Jong MA, Astreinidou E, Tans L, Keskin-Cambay F, et al. The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients. Radiother Oncol 2017;125:520–5. https://doi.org/10.1016/j.radonc.2017.09.028.
495 496 497 498	[32]	Kierkels RGJ, den Otter LA, Korevaar EW, Langendijk JA, van der Schaaf A, Knopf AC, et al. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images. Phys Med Biol 2018;63:045026. https://doi.org/10.1088/1361-6560/aa9dc2.
499 500 501 502	[33]	Bruijnen T, Stemkens B, Terhaard CHJ, Lagendijk JJW, Raaijmakers CPJ, Tijssen RHN. Intrafraction motion quantification and planning target volume margin determination of head-and-neck tumors using cine magnetic resonance imaging. Radiother Oncol 2019;130:82–8. https://doi.org/10.1016/j.radonc.2018.09.015.
503 504 505	[34]	Cheung JP, Park PC, Court LE, Ronald Zhu X, Kudchadker RJ, Frank SJ, et al. A novel dose-based positioning method for CT image-guided proton therapy. Med Phys 2013;40:1–9. https://doi.org/10.1118/1.4801910.
506 507 508	[35]	Li B, Lee HC, Duan X, Shen C, Zhou L, Jia X, et al. Comprehensive analysis of proton range uncertainties related to stopping-power-ratio estimation using dual-energy CT imaging. Phys Med Biol 2017;62:7056–74. https://doi.org/10.1088/1361-6560/aa7dc9.
509 510 511 512	[36]	Wagenaar D, Kierkels RGJ, Free J, Langendijk JA, Both S, Korevaar EW. Composite minimax robust optimization of VMAT improves target coverage and reduces non-target dose in head and neck cancer patients. Radiother Oncol 2019;136:71–7. https://doi.org/10.1016/j.radonc.2019.03.019.
513		


TABLES AND FIGURES CAPTIONS


514


515	Table 1 - Study population characteristics (N = 10)
516	* The reported treatment modalities were classified as in the normal-tissue complication probability
517	model for tube-feeding dependence.[15]
518	Table 2 - Average dose of all treatment scenarios including known error distributions for plans
519	created with different robustness setup and range uncertainty criteria (N=10).
520	PC: Pharyngeal constrictor
521	#: For Δ /mm and Δ /% the slope of the regression fit is reported
522	*: p<0.05 in a two-tailed paired student t-test.
523	**: p< α after adjusting α using Bonferroni's correction for multiple testing.
524	Figure 1 – Generation of adjusted treatment plans with various uncertainty settings.
525	The following workflow is used to create treatment plans with smaller setup and range uncertainty
526	settings from the clinical plan. The graphs show the dose profile near the targets for the dose
527	distributions generated during the adjusted treatment plan generation. a) First, the clinical dose is
528	calculated as the nominal scenario of the clinically used treatment plan which was robustly
529	optimized with a setup uncertainty setting of 5 mm and range uncertainty setting of 3%. b) Next, a
530	voxel-wise minimum robustness (multi-scenario) evaluation is performed with a shift equal to the
531	difference in robustness setting between the new treatment plan and the clinical treatment plan. In
532	this example, a treatment plan with a 2 mm setup uncertainty setting is created with an identical
533	range uncertainty setting as for the clinically used treatment plan (3%). Therefore, the shift used for
534	the voxel-wise minimum scenarios is 3 mm and 0% range. The resulting dose distribution has the
535	same dose fall-off but is shifted more towards the targets and has a slight underdosage in the target
536	c) The dose inside the target is overridden to the clinical dose as determined above (step a) to avoid
537	potential underdosage. d) Using voxel-based dose mimicking optimization, a deliverable treatment
538	plan is created with a very similar nominal dose distribution to the predicted dose distribution.
539	Figure 2 - Treatment scenario calculation workflow.
540	To calculate a single treatment scenario the following workflow was followed. To incorporate
541	changes due to changing anatomy, doses were recalculated on the weekly verification CTs. All seven
542	verification CTs were shifted with the same systematic setup and range errors which were sampled
543	from their determined distributions. For each CT, multiple daily fraction errors were sampled from


up error distribution and applied. Each treatment simulation therefore consists

545	of 35 daily perturbed CTs. This procedure was repeated 25 times for each treatment plan, sampling
546	different systematic and random errors for each treatment scenario.
547	Figure 3 - Simulated clinical target volume dose and tumor control probability as a function of
548	robustness setup and range uncertainty
549	The reported doses incorporated known systematic and random setup and range uncertainties and
550	anatomical changes.
551	Figure 4 - Simulated organ at risk dose as a function of robustness setup and range uncertainty
552	The reported doses incorporated known systematic and random setup and range uncertainties and
553	anatomical changes.
554	SMG: Submandibular gland, PG: Parotid gland, ipsi: ipsilateral, contra: contralateral, PCM:
555	Pharyngeal constrictor muscle, SGL: Supraglottic larynx, O. Cavity: Oral Cavity, Crico m.:
556	Criconharyngeal muscle

