9 research outputs found

    Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India)

    Get PDF
    The Ganges River receives inputs from highly populated cities of India (New Delhi, Calcutta, among others) and a strong influence of anthropogenic activities until reaching the Bay of Bengal. It is a seasonal river with 80% of discharges occurring between July and October during monsoon. The land-based activities next to the shore lead to discharges of untreated domestic and industrial e uents, inputs of agricultural chemicals, discharges of organic matter (cremations), and discharges of chemicals from aquaculture farms. In spite of the UNESCO declaring Human Patrimony the National Park Sundarbans, located in the delta, contamination has increased over time and it dramatically intensifies during the monsoon period due to the flooding of the drainage basin. Vertical element distribution (Cd, Co, Hg, Ni, Pb, and Zn) was studied in sediments collected in di erent stations towards the Hügli Estuary. Results determined no vertical gradient associated with the analyzed sediment samples, which informs about severe sediment dynamic in the area that probably relates to tidal hydrodynamics and seasonal variation floods. The multivariate analysis results showed di erent associations among metals and in some cases between some of them (Co, Zn, Pb, and Cu) and the organic carbon. These allow the identification of di erent geochemical processes in the area and their relationship with the sources of contamination such as discharge of domestic and industrial e uents and di use sources enhanced by the monsoons. Also, an environmental risk value was given to the studied area by comparing the analyzed concentrations to quality guidelines adopted in other countries. It showed an estimated risk associated with the concentration of the metal Cu measured in the area of Kadwip

    Sanguinarine and Chelidonine Synergistically Induce Endosomal Toll-like Receptor and M1-Associated Mediators Expression

    No full text
    Natural compounds represent the great capability to stimulate several cell types. Macrophage plays an important role for an effective immune response for infection and inflammation. Isoquinoline alkaloid, sanguinarine, and chelidonine are active compounds that exhibit activity on various tumor cells and immune cells. However, the effect of these compounds on the endosomal toll-like receptor (enTLR) and type I interferon (IFN) are still unclear. The monocyte-derived macrophages (MDMs) were cultured and were determined their cell viability and phagocytic activity to Staphylococcus aureus DMST8840. The nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression were also examined. The expression of enTLRs, type I IFN, and cytokines were determined by real-time PCR. Result shows that the compounds did not affect on MDM cell viability. Sanguinarine and chelidonine enhance phagocytic activity of MDM against Staphylococcus aureus DMST8840 by revealing a higher number of bacterial survival than the MDM treated by polyI:C, and the cell control after co-culture for 3 h. The production of NO has no difference amount but iNOS mRNA production was down-regulated in sanguinarine, chelidonine and their mixed treated MDM. The expressions of enTLRs and IFN-β1 mRNA were up-regulated in both compounds and their combination. Additionally, these compounds also enhance M1-liked cytokine by up-regulated IL-6 and down-regulated IL-10 and TGF-β1, respectively. Therefore, sanguinarine and chelidonine enhance enTLR and IFN-β1 expression and trend to stimulate the cell into M1-liked MDM

    6. Chromium

    No full text

    Alkoxides and alkylalkoxides of metals and metalloids

    No full text
    corecore