1,240 research outputs found

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Energy dependence of inclusive photon elliptic flow in heavy-ion collision models

    No full text
    We present a comparison of inclusive photon elliptic flow parameter (v_{2}) measured at RHIC and SPS high energy heavy-ion collision experiments to calculations done using the AMPT and UrQMD models. The new results discussed includes the comparison of the model calculations of photon v_{2} to corresponding measurements at the forward rapidities. We observe that the AMPT model which includes partonic interactions and quark coalescence as a mechanism of hadronization is in good agreement with the measurements even at forward rapidities (2.3 < \eta < 3.9) at RHIC as was previously observed for measurements at midrapidity. At the top SPS energy the contribution from partonic effects are smaller than that at RHIC energy, based on the comparison of the measured photon v_{2} with those from the AMPT default and UrQMD model calculations. We find that if the measurements in RHIC beam energy scan (BES) and LHC energies would require an energy dependent partonic cross section in the AMPT models, then the observed longitudinal scaling of v_{2} at top RHIC energies (19.6-200 GeV) will be violated. We also discuss the relation between the inclusive photon v_{2} and those of their parent \pi^{0}'s for the beam energies of 7.7 GeV to 2.76 TeV. The model results show that the transverse momentum (p_{\mathrm T}) integrated v_{2} of \pi^{0} is larger by about 44% relative to those of the inclusive photons. Finally we present the expectations of inclusive photon v_{2} for the RHIC beam energy scan (BES) program and LHC from the transport models, so that they can be compared to corresponding measurements using the data already collected at RHIC and LHC.Comment: 15 pages and 14 figures. Accepted for publication in Journal of Physics

    Unveiling hadronic resonance dynamics at LHC energies: insights from EPOS4

    No full text
    International audienceHadronic resonances, with lifetimes of a few fm/\textit{c}, are key tools for studying the hadronic phase in high-energy collisions. This work investigates resonance production in pp collisions at s=13.6\sqrt{s} = 13.6 TeV and in Pb-Pb collisions at sNN=5.36\sqrt{s_{\rm{NN}}} = 5.36 TeV using the EPOS4 model, which can switch the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) ON and OFF, enabling the study of final-state hadronic interactions. We focus on hadronic resonances and the production of non-strange and strange hadrons, addressing effects like rescattering, regeneration, baryon-to-meson production, and strangeness enhancement, using transverse momentum (pTp_\textrm{T}) spectra and particle ratios. Rescattering and strangeness effects are important at low p_\rm{T}, while baryon-to-meson ratios dominate at intermediate p_\rm{T}. A strong mass-dependent radial flow is observed in the most central Pb-Pb collisions. The average p_\rm{T}, scaled with reduced hadron mass (mass divided by valence quarks), shows a deviation from linearity for short-lived resonances. By analyzing the yield ratios of short-lived resonances to stable hadrons in pp and Pb-Pb collisions, we estimate the time duration (τ\tau) of the hadronic phase as a function of average charged multiplicity. The results show that τ\tau increases with multiplicity and system size, with a nonzero value in high-multiplicity pp collisions. Proton (p), strange (Λ\rm{\Lambda}), and multi-strange (Ξ\rm{\Xi}, Ω\rm{\Omega}) baryon production in central Pb-Pb collisions is influenced by strangeness enhancement and baryon-antibaryon annihilation. Comparing with LHC measurements offers insights into the dynamics of the hadronic phase

    生産增加と貨幣需要

    Get PDF
    We report on two-particle charge-dependent cor- relations in pp, p\u2013Pb, and Pb\u2013Pb collisions as a function of the pseudorapidity and azimuthal angle difference, \u3b7 and \u3c6 respectively. These correlations are studied using the balance function that probes the charge creation time and the develop- ment of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum ( pT ) in pp, p\u2013Pb, and Pb\u2013Pb collisions at 1asNN = 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2 < pT < 2.0 GeV/c, the balance function becomes narrower in both \u3b7 and \u3c6 directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mecha- nisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low pT is a feature of bulk particle production
    corecore