221 research outputs found

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at √<i>s</i>=13 TeV

    Get PDF

    Evidence for Top Quark Production in Nucleus-Nucleus Collisions

    Get PDF
    Peer reviewe

    Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ Leptons in pp collisions at sqrt[s]=13  TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13  TeV and corresponding to an integrated luminosity of 138  fb^{-1}. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states

    Observation of the B-s(0) -> X(3872)phi Decay

    Get PDF
    Using a data sample of proton-proton collisions at root s = 13 TeV, corresponding to an integrated luminosity of 140 fb(-1) collected by the CMS experiment in 2016-2018, the B-s(0) -> X(3872)phi decay is observed. Decays into J/psi pi(+)pi(-) and K+K- are used to reconstruct, respectively, the X(3872) and phi. The ratio of the product of branching fractions B[B-s(0) -> X(3872)phi]B[X(3872) -> J/psi pi(+)pi(-)] to the product B[B-s(0) ->psi(2S)phi]B[psi(2S) -> J/psi pi(+)pi(-)] is measured to be [2.21 +/- 0.29(stat) +/- 0.17(syst)]%. The ratio B[B-s(0) -> X(3872)phi]/B[B-0 -> X(3872)K-0] is found to be consistent with one, while the ratio B[B-s(0) -> X(3872)phi]/B[B+-> X(3872)K+] is two times smaller. This suggests a difference in the production dynamics of the X(3872) in B-0 and B(0)s meson decays compared to B+. The reported observation may shed new light on the nature of the X(3872) particle.Peer reviewe

    Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses

    Search for dark matter produced in association with a Higgs boson decaying to a τ lepton pair in proton-proton collisions at √s = 13 TeV

    Get PDF
    Data Availability Statement: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use, and open access policy.Code Availability Statement: The CMS core software is publicly available on GitHub.A version of the article is available at arXiv:2506.04431v2 [hep-ex], https://arxiv.org/abs/2506.04431 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-23-012 (CMS Public Pages). Report number: CMS-SUS-23-012, CERN-EP-2025-100. Journal reference: JHEP 10 (2025) 170. Submission history: From: The CMS Collaboration: [v1] Wed, 4 Jun 2025 20:32:39 UTC (1,585 KB); [v2] Mon, 3 Nov 2025 13:46:51 UTC (1,635 KB)A search for dark matter particles produced in association with a Higgs boson decaying into a pair of \tau leptons is performed using data collected in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector. The analysis is based on a data set corresponding to an integrated luminosity of 101 fb^{-1} collected in 2017-2018. No significant excess over the expected standard model background is observed. This result is interpreted within the frameworks of the 2HDM+a and baryonic Z' benchmark simplified models. The 2HDM+a model is a type-II two-Higgs-doublet model featuring a heavy pseudoscalar with an additional light pseudoscalar. Upper limits at 95% confidence level are set on the product of the production cross section and the branching fraction for each of these two simplified models. Heavy pseudoscalar boson masses between 400 and 700 GeV are excluded for a light pseudoscalar mass of 100 GeV. For the baryonic Z' model, a statistical combination is made with an earlier search based on a data set of 36 fb^{-1} collected in 2016. In this model, Z' boson masses up to 1050 GeV are excluded for a dark matter particle mass of 1 GeV.SCOAP3

    CMS pythia  8 colour reconnection tunes based on underlying-event data

    Get PDF
    A preprint version of the article is available at arXiv (https://arxiv.org/abs/2205.02905).Copyright © CERN for the benefit of the CMS collaboration 2023. New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the PYTHIA 8 event generator, are obtained based on the default CMS PYTHIA 8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies s√=7 and 13TeV , and by the CDF experiment at 1.96TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair (tt¯) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of tt¯ events in the semileptonic channel at 13TeV.SCOAP3

    Measurements of Higgs boson production in the decay channel with a pair of ττ leptons in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2204.12957v2 [hep-ex], https://arxiv.org/abs/2204.12957v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables, including additional supplementary figures and tables, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-010 (CMS Public Pages). Report number: CMS-HIG-19-010, CERN-EP-2022-027.Measurements of Higgs boson production, where the Higgs boson decays into a pair of τ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb^{−1}. Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to τ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be 0.82 ± 0.11 for inclusive Higgs boson production, 0.67 ± 0.19 (0.81 ± 0.17) for the production mainly via gluon fusion (vector boson fusion), and 1.79 ± 0.45 for vector boson associated Higgs boson production.SCOAP3

    Energy-scaling behavior of intrinsic transverse-momentum parameters in Drell-Yan simulation

    Get PDF
    Data Availability: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use, and open access policy https://dx.doi.org/10.7483/OPENDATA.CMS.7347.JDWH .A preprint version of the article is available on arXiv, arXiv:2409.17770v2 [hep-ph] (https://arxiv.org/abs/2409.17770). [v2] Tue, 8 Apr 2025 23:23:48 UTC (450 KB). Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/GEN-22-001 (CMS Public Pages). Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex). Report numbers: CMS-GEN-22-001, CERN-EP-2024-216An analysis is presented based on models of the intrinsic transverse momentum (intrinsic ) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans 3 orders of magnitude in center-of-mass energy and 2 orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic parameters, independent of the dilepton invariant mass at a given center-of-mass energy.We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA)
    corecore