891 research outputs found

    Near-Infrared Spectroscopy of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32-565830.2: the Importance of Non-Equilibrium Chemistry

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32-565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R=540 spectrum was obtained for W0350, covering 1.0 < lambda um < 1.7, and a cross-dispersed GNIRS R=2800 spectrum was obtained for W1738, covering 0.993-1.087 um, 1.191-1.305 um, 1.589-1.631 um, and 1.985-2.175 um, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH_4/CO and NH_3/N_2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T_eff = 425 +/- 25 K and log g = 4.0 +/- 0.25, and for the Y1, W0350, T_eff = 350 +/- 25 K and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3-9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3-3 Gyr, and the age of W1738 is 0.15-1 Gyr.Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Minist´erio da Ciˆencia, Tecnologia e Inova¸c˜ao (Brazil) and Ministerio de Ciencia, Tecnolog´ıa e Innovaci´on Productiva (Argentina). S. L.’s research is supported by Gemini Observatory. D.S.’ work was supported in part by NASA grant NNH12AT89I from Astrophysics Theory. I. B.’s work is supported by the European Research Council through grant ERC-AdG No.– 17 – 320478-TOFU.This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/ IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

    The Age of the Galactic Disk

    Get PDF
    I review different methods devised to derive the age of the Galactic Disk, namely the Radio-active Decay (RD), the Cool White Dwarf Luminosity Function (CWDLF), old opne clusters (OOC) and the Color Magnitude Diagram (CMD) of the stars in the solar vicinity. I argue that the disk is likely to be 8-10 Gyr old. Since the bulk of globulars has an age around 13 Gyr, the possibility emerges that the Galaxy experienced a minimum of Star Formation at the end of the halo/bulge formation. This minimum might reflect the time at which the Galaxy started to acquire material to form the disk inside-out.Comment: 10 pages, 4 figure, invited review, in "The chemical evolution of the Milky Way : Stars vs Clusters, Vulcano (Italy), 20-24 September 199

    Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a Mare’s tale

    Get PDF
    Silica is the second most abundant biomineral being exceeded in nature only by biogenic CaCO3. Many land plants (such as rice, cereals, cucumber, etc.) deposit silica in significant amounts to reinforce their tissues and as a systematic response to pathogen attack. One of the most ancient species of living vascular plants, Equisetum arvense is also able to take up and accumulate silica in all parts of the plant. Numerous methods have been developed for elimination of the organic material and/or metal ions present in plant material to isolate biogenic silica. However, depending on the chemical and/or physical treatment applied to branch or stem from Equisetum arvense; other mineral forms such glass-type materials (i.e. CaSiO3), salts (i.e. KCl) or luminescent materials can also be isolated from the plant material. In the current contribution, we show the chemical and/or thermal routes that lead to the formation of a number of different mineral types in addition to biogenic silica

    A rocky planet transiting a nearby low-mass star

    Full text link
    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at http://dx.doi.org/10.1038/nature15762. This is the authors' version of the manuscrip

    Variability of Brown Dwarfs

    Full text link
    Brown dwarfs constitute a missing link between low-mass stars and giant planets. Their atmospheres display chemical species typical of planets, and one could wonder whether they also have weather-like patterns. While brown dwarf surface features cannot be directly resolved, the photometric and spectroscopic modulations induced by these features, as they rotate in and out of view, provide a wealth of information on the evolution of their atmosphere. A review of brown dwarfs variability through the L, T and Y spectral types sequence is presented, as well as the constraints that they set on the nature of weather-like patterns on their surface.Comment: Accepted chapter in the "Handbook of Exoplanets"; Springe

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001

    The Classification of T Dwarfs

    Get PDF
    We discuss methods for classifying T dwarfs based on spectral morphological features and indices. T dwarfs are brown dwarfs which exhibit methane absorption bands at 1.6 and 2.2 μm{\mu}m. Spectra at red optical (6300--10100 {\AA}) and near-infrared (1--2.5 μm{\mu}m) wavelengths are presented, and differences between objects are noted and discussed. Spectral indices useful for classification schemes are presented. We conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 μm{\mu}m K I doublets lines being most valuable. Spectral features sensitive to gravity are discussed, with the strength of the K-band peak used as an example. Such features may be used to derive a two-dimensional scheme based on temperature and mass, in analogy to the MK temperature and luminosity classes.Comment: 15 pages, 6 figures, conference proceedings for IAU Ultracool Dwarf Stars session, ed. I. Steele & H. Jone

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore