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Abstract
We are concerned with the existence of at least one, two or three positive solutions
for the boundary value problem with three-point multi-term fractional integral
boundary conditions:

{
Dqu(t) + f (t,u(t)) = 0, 1 < q≤ 2, 0 < t < 1,
u(0) = 0, u(1) =

∑m
i=1 αi(Ipiu)(η), 0 < η < 1,

where Dq is the standard Riemann-Liouville fractional derivative. Our analysis relies on
the Krasnoselskii fixed point theorem and the Leggett-Williams fixed point theorem.
Some examples are also given to illustrate the main results.
MSC: 26A33; 34A08; 34B18

Keywords: fractional differential equations; nonlocal boundary conditions; positive
solutions; fixed point theorem

1 Introduction
In recent years, the interest in the study of fractional differential equations has been grow-
ing rapidly. Fractional differential equations have arisen in mathematical models of sys-
tems and processes in various fields such as aerodynamics, acoustics, mechanics, electro-
magnetism, signal processing, control theory, robotics, population dynamics, finance, etc.
We refer a reader interested in the systematic development of the topic to the books

[–]. A variety of results on initial and boundary value problems of fractional differential
equations and inclusions can easily be found in the literature on the topic. For some recent
results, we can refer to [–] and references cited therein.
In this paper, we concentrate on the study of positive solutions to the boundary value

problems of fractional differential equations. More precisely, we consider the nonlinear
fractional differential equation

Dqu(t) + f
(
t,u(t)

)
= ,  < q ≤ ,  < t < , (.)

subject to three-point multi-term fractional integral boundary conditions

u() = , u() =
m∑
i=

αi
(
Ipiu

)
(η),  < η < , (.)
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where Dq is the standard Riemann-Liouville fractional derivative of order q, Ipi is the
Riemann-Liouville fractional integral of order pi > , i = , , . . . ,m, f : [, ] × [,∞) →
[,∞) and αi ≥ , i = , , . . . ,m, are real constants such that

∑m
i=

αiη
pi+q–�(q)
�(pi+q)

< .
We mention that integral boundary conditions are encountered in various applications

such as population dynamics, blood flow models, chemical engineering, cellular systems,
heat transmission, plasma physics, thermoelasticity, etc. Nonlocal conditions come up
when values of the function on the boundary is connected to values inside the domain.
One of the most frequently used tools for proving the existence of positive solutions to

the integral equations and boundary value problems is the Krasnoselskii theorem on cone
expansion and compression and its norm-type version due to Guo and Lakshmikantham
[]. The main idea is to construct a cone in a Banach space and a completely continuous
operator defined on this cone based on the corresponding Green’s function and then find
fixed points of the operator. See [, ] and references therein for recent development.
The rest of this paper is organized as follows. In Section  we present some necessary

basic knowledge and definitions for fractional calculus theory and give the corresponding
Green’s function of boundary value problem (.)-(.). Moreover, some properties of the
Green’s function are also proved. In Section  we use the properties of the corresponding
Green’s function and the Guo-Krasnoselskii fixed point theorem to show the existence of
at least one or two positive solutions of (.)-(.) under the condition that the nonlinear f
is either sublinear or superlinear. In Section  we prove the existence of at least three pos-
itive solutions via the Leggett-Williams fixed point theorem. Finally, illustrative examples
are presented in Section .

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [, ]
and present preliminary results needed in our proofs later.

Definition . The Riemann-Liouville fractional integral of order α >  of a function g :
(,∞)→R is defined by

Iαg(t) =
∫ t



(t – s)α–

�(α)
g(s)ds,

provided the right-hand side is point-wise defined on (,∞), where � is the gamma func-
tion.

Definition . The Riemann-Liouville fractional derivative of order α >  of a continuous
function g : (,∞) →R is defined by

Dαg(t) =


�(n – α)

(
d
dt

)n ∫ t



g(s)
(t – s)α–n+

ds, n –  < α < n,

where n = [α] + , [α] denotes the integer part of a real number α, provided the right-hand
side is point-wise defined on (,∞).

From the definition of the Riemann-Liouville fractional derivative, we can obtain the
following lemmas.

http://www.advancesindifferenceequations.com/content/2014/1/28
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Lemma . (see []) Let α >  and y ∈ C(, ) ∩ L(, ). Then the fractional differential
equation Dαy(t) =  has a unique solution

y(t) = ctα– + ctα– + · · · + cntα–n,

where ci ∈R, i = , , . . . ,n, and n –  < α < n.

Lemma . (see []) Let α > . Then for y ∈ C(, )∩ L(, ) it holds

IαDαy(t) = y(t) + ctα– + ctα– + · · · + cntα–n,

where ci ∈R, i = , , . . . ,n, and n –  < α < n.

The following property (Dirichlet’s formula) of the fractional calculus is well known []:

Iγ Iβu(t) = Iγ+βu(t), t ∈ [, ],u ∈ L(, ),γ + β ≥ ,

which has the form
∫ t


(t – s)γ–

(∫ s


(s – τ )β–u(τ )dτ

)
ds =

�(γ )�(β)
�(γ + β)

∫ t


(t – s)γ+β–u(s)ds.

For convenience we put

� :=  –
m∑
i=

αiη
pi+q–�(q)

�(pi + q)
. (.)

Lemma . Let
∑m

i=
αiη

pi+q–�(q)
�(pi+q)

< , αi ≥ , pi > , i = , , . . . ,m, and h ∈ C([, ],R). The
unique solution u ∈ AC([, ],R) of the boundary value problem

Dqu(t) + h(t) = , t ∈ (, ),q ∈ (, ], (.)

u() = , u() =
m∑
i=

αi
(
Ipiu

)
(η),  < η < , (.)

is the integral equation

u(t) =
∫ 


G(t, s)h(s)ds, (.)

where G(t, s) is the Green’s function given by

G(t, s) = g(t, s) +
m∑
i=

αitq–

��(pi + q)
gi(η, s), (.)

where

g(t, s) =

⎧⎨
⎩

tq–(–s)q––(t–s)q–
�(q) ;  ≤ s ≤ t ≤ ,

tq–(–s)q–
�(q) ;  ≤ t ≤ s ≤ 

(.)

http://www.advancesindifferenceequations.com/content/2014/1/28
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and

gi(η, s) =

{
ηpi+q–( – s)q– – (η – s)pi+q–;  ≤ s ≤ η < ,
ηpi+q–( – s)q–;  < η ≤ s≤ .

(.)

Proof Using Lemmas .-., problem (.)-(.) can be expressed as an equivalent inte-
gral equation

u(t) = ctq– + ctq– –
∫ t



(t – s)q–

�(q)
h(s)ds (.)

for c, c ∈ R. The first condition of (.) implies that c = . Taking the Riemann-Liouville
fractional integral of order pi >  for (.) and using Dirichlet’s formula, we get that

(
Ipiu

)
(t) =

∫ t



(t – s)pi–

�(pi)

(
csq– –

∫ s



(s – r)q–

�(q)
h(r)dr

)
ds

= c
∫ t



(t – s)pi–sq–

�(pi)
ds –

∫ t



(t – s)pi–

�(pi)

∫ s



(s – r)q–

�(q)
h(r)dsdr

= c
tpi+q–�(q)
�(pi + q)

–


�(pi + q)

∫ t


(t – s)pi+q–h(s)ds.

The second condition of (.) yields

c –
∫ 



( – s)q–

�(q)
h(s)ds = c

m∑
i=

αiη
pi+q–�(q)

�(pi + q)

–
m∑
i=

αi

�(pi + q)

∫ η


(η – s)pi+q–h(s)ds.

Then we have that

c =

�

[∫ 



( – s)q–

�(q)
h(s)ds –

m∑
i=

αi

�(pi + q)

∫ η


(η – s)pi+q–h(s)ds

]
.

Therefore, the unique solution of boundary value problem (.)-(.) is written as

u(t) = –
∫ t



(t – s)q–

�(q)
h(s)ds +


��(q)

∫ 


( – s)q–tq–h(s)ds

–

�

m∑
i=

αi

�(pi + q)

∫ η


(η – s)pi+q–tq–h(s)ds.

Hence, by taking into account (.), we have

u(t) = –
∫ t



(t – s)q–

�(q)
h(s)ds +


��(q)

∫ 


( – s)q–tq–h(s)ds

–

�

m∑
i=

αi

�(pi + q)

∫ η


(η – s)pi+q–tq–h(s)ds

http://www.advancesindifferenceequations.com/content/2014/1/28
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+
∫ 



( – s)q–tq–

�(q)
h(s)ds –

∫ 



( – s)q–tq–

�(q)
h(s)ds

=
∫ 



( – s)q–tq–

�(q)
h(s)ds –

∫ t



(t – s)q–

�(q)
h(s)ds

+
m∑
i=

αitq–

��(pi + q)

(∫ 


ηpi+q–( – s)q–h(s)ds –

∫ η


(η – s)pi+q–h(s)ds

)

=
∫ 


g(t, s)h(s)ds +

∫ 



m∑
i=

αitq–

��(pi + q)
gi(η, s)h(s)ds

=
∫ 


G(t, s)h(s)ds.

The proof is completed. �

Lemma . The Green’s function G(t, s) in (.) satisfies the following conditions:

(P) G(t, s) is continuous on [, ]× [, ];
(P) G(t, s)≥  for all  ≤ s, t ≤ ;
(P) G(t, s)≤max≤t≤G(t, s)≤ g(s, s) +

∑m
i=

αi
��(pi+q)

gi(η, s) for all s, t ∈ [, ];

(P)
∫ 
 max≤t≤G(t, s)ds≤ �(q)

�(q) +
∑m

i=
αiη

pi+q–

��(pi+q)
( pi+q(–η)

q(pi+q)
);

(P) minη≤t≤G(t, s) ≥ ∑m
i=

αiηq–

��(pi+q)
gi(η, s) for s ∈ [, ].

Proof It is easy to check that (P) holds. To prove (P), we will show that g(t, s) ≥  and
gi(η, s)≥ , i = , , . . . ,m, for all  ≤ s, t ≤ .
Let k(t, s) = tq–( – s)q– – (t – s)q– for ≤ s ≤ t ≤ , then we have

k(t, s) = (t – st)q– – (t – s)q– ≥ (t – s)q– – (t – s)q– = .

Let k(t, s) = tq–( – s)q– for  ≤ t ≤ s ≤ , then we get k(t, s) ≥ . Therefore, g(t, s) ≥ 
for all  ≤ s, t ≤ . Now, let ki(η, s) = ηpi+q–( – s)q– – (η – s)pi+q– for  ≤ s ≤ η < , then
we get

ki(η, s) = ηpi+q–( – s)q– – ηpi+q–
(
 –

s
η

)pi+q–

> ηpi+q–( – s)q– – ηpi+q–( – s)pi+q–

= ηpi+q–
[
( – s)q– – ( – s)pi+q–

]
> .

Let ki(η, s) = ηpi+q–( – s)q– for  < η ≤ s ≤ , then we have ki(η, s) ≥ . Therefore,
ki(η, s),ki(η, s) ≥ , i = , , . . . ,m, which implies that gi(η, s) ≥ , i = , , . . . ,m, for all
 ≤ s ≤ .
To prove (P), we will show that g(t, s) ≤ g(s, s) for s, t ∈ [, ]. For  ≤ s ≤ t ≤ , by the

definition of k(t, s), we have

∂

∂t
k(t, s) = (q – )tq–( – s)q– – (q – )(t – s)q–

= (q – )(t – ts)q–( – s) – (q – )(t – s)q–

http://www.advancesindifferenceequations.com/content/2014/1/28
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≤ (q – )(t – s)q–( – s) – (q – )(t – s)q–

= –s(q – )(t – s)q– ≤ .

Hence, k(t, s) is decreasing with respect to t. Thenwe have g(t, s) ≤ g(s, s) for  ≤ s ≤ t ≤ .
For  ≤ t ≤ s ≤ , by the definition of k(t, s), we have that k(t, s) is increasing with respect
to t. Thus g(t, s)≤ g(s, s) for ≤ t ≤ s ≤ . Therefore, g(t, s)≤ g(s, s) for ≤ s, t ≤ .
From the above analysis, we have for  ≤ s ≤  that

G(t, s) ≤ max
≤t≤

G(t, s) = max
≤t≤

(
g(t, s) +

m∑
i=

αitq–

��(pi + q)
gi(η, s)

)

≤ g(s, s) +
m∑
i=

αi

��(pi + q)
gi(η, s).

To prove (P), by direct integration, we have

∫ 


max
≤t≤

G(t, s)ds ≤
∫ 



(
g(s, s) +

m∑
i=

αi

��(pi + q)
gi(η, s)

)
ds

=
∫ 



sq–( – s)q–

�(q)
ds

+
m∑
i=

αi

��(pi + q)

(∫ 

η

ηpi+q–( – s)q– ds

+
∫ η



[
ηpi+q–( – s)q– – (η – s)pi+q–

]
ds

)

=
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
.

To prove (P), from g(t, s)≥  and gi(η, s) ≥ , i = , , . . . ,m, for all ≤ s, t ≤ , we have

min
η≤t≤

G(t, s) = min
η≤t≤

(
g(t, s) +

m∑
i=

αitq–

��(pi + q)
gi(η, s)

)

≥ min
η≤t≤

g(t, s) + min
η≤t≤

m∑
i=

αitq–

��(pi + q)
gi(η, s)

≥
m∑
i=

αiη
q–

��(pi + q)
gi(η, s)

for  ≤ s ≤ . This completes the proof. �

Let E = C([, ],R) be the Banach space endowed with the supremum norm ‖ · ‖. Define
the cone P ⊂ E by

P =
{
u ∈ E : u(t)≥ 

}
,

and the operator A :P → E by

Au(t) :=
∫ 


G(t, s)f

(
s,u(s)

)
ds. (.)

http://www.advancesindifferenceequations.com/content/2014/1/28
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In view of Lemma ., the positive solutions of problem (.)-(.) are given by the operator
equation u(t) = Au(t).

Lemma . Suppose that f : [, ]× [,∞) → [,∞) is continuous. The operator A :P →
P is completely continuous.

Proof Since G(t, s) ≥  for s, t ∈ [, ], we have Au(t) ≥  for all u ∈P . Hence, A :P →P .
For a constant R > , we define 
 = {u ∈P : ‖u‖ < R}.
Let

L = max
≤t≤,≤u≤R

∣∣f (t,u)∣∣. (.)

Then, for u ∈ 
, from Lemma ., one has

∣∣Au(t)∣∣ = ∣∣∣∣
∫ 


G(t, s)f

(
s,u(s)

)
ds

∣∣∣∣
≤ L

∫ 


G(t, s)ds

≤ L
∫ 



(
g(s, s) +

m∑
i=

αi

��(pi + q)
gi(η, s)

)
ds

= L

[
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]
:=M.

Therefore, ‖Au‖ ≤M, and so A(
) is uniformly bounded.
Now, we shall show that A(
) is equicontinuous. For u ∈ 
, t, t ∈ [, ], t < t, we have

∣∣Au(t) –Au(t)
∣∣ ≤ L

∫ 



∣∣G(t, s) –G(t, s)
∣∣ds,

where L is defined by (.). Since G(t, s) is continuous on [, ]× [, ], thereforeG(t, s) is
uniformly continuous on [, ]× [, ]. Hence, for any ε > , there exists a positive constant

δ =



{
ε�(q)
L

(



q +

∑m
i=

αiη
pi+q–

��(pi+q)
( pi+q(–η)

q(pi+q)
)

)} 
q–

> ,

whenever |t – t| < δ, we have the following two cases.
Case . δ ≤ t < t < .
Therefore,

∣∣Au(t) –Au(t)
∣∣ ≤ L

∫ 



∣∣G(t, s) –G(t, s)
∣∣ds

= L
[∫ t



∣∣G(t, s) –G(t, s)
∣∣ds + ∫ t

t

∣∣G(t, s) –G(t, s)
∣∣ds

+
∫ 

t

∣∣G(t, s) –G(t, s)
∣∣ds]

http://www.advancesindifferenceequations.com/content/2014/1/28
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<
(tq– – tq– )L

�(q)

[∫ 


( – s)q– ds +

m∑
i=

αi

��(pi + q)

∫ 


gi(η, s)ds

]

=
(tq– – tq– )L

�(q)

[

q
+

m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

≤ (q – )δq–L
�(q)

[

q
+

m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

< ε.

Case .  ≤ t < δ, t < δ.
Therefore,

∣∣Au(t) –Au(t)
∣∣ ≤ L

∫ 



∣∣G(t, s) –G(t, s)
∣∣ds

<
(tq– – tq– )L

�(q)

[

q
+

m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

≤ tq– L
�(q)

[

q
+

m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

<
(δ)q–L

�(q)

[

q
+

m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

= ε.

Thus, A(
) is equicontinuous. In view of the Arzelá-Ascoli theorem, we have that A(
) is
compact, i.e., A : P → P is a completely continuous operator. This completes the proof.

�

For convenience, we set

 =
m∑
i=

αiη
pi+(q–)

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
,

 =
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
,

 =
m∑
i=

αiη
pi+(q–)( – η)q

��(pi + q)q
.

3 Existence of at least one or two positive solutions
For the main results of this section, we use the well-known Guo-Krasnoselskii fixed point
theorem.

Theorem . ([]) Let E be a Banach space, and letP ⊂ E be a cone.Assume that�,�

are open subsets of E with  ∈ �, � ⊂ �, and let T :P ∩ (� \ �) →P be a completely
continuous operator such that:

(i) ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂�, and ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂�; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂�, and ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂�.

Then T has a fixed point in P ∩ (� \ �).

http://www.advancesindifferenceequations.com/content/2014/1/28
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Theorem . Let f : [, ]× [,∞) → [,∞) be a continuous function. Assume that there
exist constants r > r > , ρ ∈ (–

 ,∞) and ρ ∈ (,–
 ) such that:

(H) f (t,u)≥ ρr, for (t,u) ∈ [, ]× [, r];
(H) f (t,u)≤ ρr, for (t,u) ∈ [, ]× [, r].

Then boundary value problem (.)-(.) has at least one positive solution u such that

r < ‖u‖ < r.

Proof We shall show that the first part of Theorem . is satisfied. By Lemma ., the
operator A :P →P is completely continuous.
Let 
 = {u ∈ E : ‖u‖ < r}, then for any u ∈ P ∩ ∂
, we have  ≤ u(t) ≤ r for all t ∈

[, ]. From (H), it follows for t ∈ [η, ] that

(Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≥
∫ 


min
η≤t≤

G(t, s)f
(
s,u(s)

)
ds

≥ ρr
m∑
i=

αiη
q–

��(pi + q)

∫ 


gi(η, s)ds

= ρr
m∑
i=

αiη
q–

��(pi + q)

(∫ 

η

ηpi+q–( – s)q– ds

+
∫ η



[
ηpi+q–( – s)q– – (η – s)pi+q–

]
ds

)

= ρr

[ m∑
i=

αiη
pi+(q–)

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

≥ r = ‖u‖,

which yields

‖Au‖ ≥ ‖u‖ for u ∈P ∩ ∂
. (.)

Let 
 = {u ∈ E : ‖u‖ < r}, then for any u ∈ P ∩ ∂
, we have  ≤ u(t) ≤ r for all
t ∈ [, ]. For t ∈ [, ], assumption (H) yields

(Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≤
∫ 


G(s, s)f

(
s,u(s)

)
ds

≤ ρr
∫ 



(
g(s, s) +

m∑
i=

αi

��(pi + q)
gi(η, s)

)
ds

= ρr

[
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

≤ r = ‖u‖,
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one has

‖Au‖ ≤ ‖u‖ for u ∈P ∩ ∂
. (.)

Therefore, from (.), (.) and the first part of Theorem ., it follows that A has a fixed
point in P ∩ (
 \ 
) which is a positive solution of boundary value problem (.)-(.).
Hence, problem (.)-(.) has at least one positive solution u such that

r < ‖u‖ < r.

The proof is complete. �

Theorem . Let all the assumptions of Theorem . hold. In addition, assume that

(H) limu→∞ maxt∈[,] f (t,u)
u =∞.

Then boundary value problem (.)-(.) has at least two positive solutions u and u such
that

 < r < ‖u‖ < r < ‖u‖.

Proof It follows from Theorem . that there exists a positive solution u such that r <
‖u‖ < r. From (H), there exists r∗ > r such that for any t ∈ [, ] and for any M∗ ∈
(–

 ,∞),

f (t,u) ≥M∗u for u≥ r∗.

Let 
 = {u ∈ E : ‖u‖ < r∗}. Then, for any u ∈P ∩ ∂
 and for t ∈ [η, ], we have

(Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≥
∫ 


min
η≤t≤

G(t, s)f
(
s,u(s)

)
ds

≥ M∗r∗
m∑
i=

αiη
q–

��(pi + q)

∫ 


gi(η, s)ds

= M∗r∗
[ m∑

i=

αiη
pi+(q–)

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

≥ r∗ = ‖u‖.

This implies that

‖Au‖ ≥ ‖u‖ for u ∈P ∩ ∂
. (.)

It follows from (.), (.) and the second part of Theorem . that A has a fixed point in
P ∩ (
 \ 
).

http://www.advancesindifferenceequations.com/content/2014/1/28
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Therefore, we conclude that boundary value problem (.)-(.) has at least two positive
solutions such that

 < r < ‖u‖ < r < ‖u‖. �

Similarly to the previous theorems, we can prove the following.

Theorem . Let f : [, ]× [,∞)→ [,∞) be a continuous function. Assume that there
exist constants  < r < r and ρ ∈ (–

 ,∞), ρ ∈ (,–
 ) such that:

(H) f (t,u) ≤ ρr for (t,u) ∈ [, ]× [, r];
(H) f (t,u)≥ ρr for (t,u) ∈ [, ]× [, r];
(H) limu→∞ maxt∈[,] f (t,u)

u = .

Then boundary value problem (.)-(.) has at least two positive solutions u and u such
that

 < r < ‖u‖ < r < ‖u‖.

Corollary . Assume that conditions (H)-(H) are satisfied. Then boundary value prob-
lem (.)-(.) has at least one positive solution u such that

r < ‖u‖ < r.

4 Existence of at least three positive solutions
In this section we use the Leggett-Williams fixed point theorem to prove the existence of
at least three positive solutions.

Definition . A continuous mapping θ : P → [, +∞) is said to be a nonnegative con-
tinuous concave functional on the cone P of a real Banach space E provided that

θ
(
λu + ( – λ)v

) ≥ λθ (u) + ( – λ)θ (v)

for all u, v ∈P and λ ∈ [, ].

Let a,b,d >  be constants. We define Pd = {u ∈ P : ‖u‖ < d}, Pd = {u ∈ P : ‖u‖ ≤ d}
and P(θ ,a,b) = {u ∈P : θ (u) ≥ a,‖u‖ ≤ b}.

Theorem . ([]) Let P be a cone in the real Banach space E and c >  be a constant.
Assume that there exists a concave nonnegative continuous functional θ on P with θ (u) ≤
‖u‖ for all u ∈Pc. Let A :Pc →Pc be a completely continuous operator. Suppose that there
exist constants  < a < b < d ≤ c such that the following conditions hold:

(i) {u ∈P(θ ,b,d) : θ (u) > b} �= ∅ and θ (Au) > b for u ∈P(θ ,b,d);
(ii) ‖Au‖ < a for u≤ a;
(iii) θ (Au) > b for u ∈P(θ ,b, c) with ‖Au‖ > d.

Then A has at least three fixed points u, u and u in Pc.
Furthermore, ‖u‖ < a, b < θ (u), a < ‖u‖ with θ (u) < b.
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We now prove the following result.

Theorem . Let f : [, ]× [,∞)→ [,∞) be a continuous function. Suppose that there
exist constants  < a < b < c such that the following assumptions hold:

(H) f (t,u) < –
 a for (t,u) ∈ [, ]× [,a];

(H) f (t,u) > –
 b for (t,u) ∈ [η, ]× [b, c];

(H) f (t,u) ≤ –
 c for (t,u) ∈ [, ]× [, c].

Then boundary value problem (.)-(.) has at least three positive solutions u, u and u
with

‖u‖ < a, b < min
η≤t≤

u(t)

and

a < ‖u‖ with min
η≤t≤

u(t) < b.

Proof We will show that all the conditions of the Leggett-Williams fixed point theorem
are satisfied for the operator A defined by (.).
For u ∈Pc, we have ‖u‖ ≤ c. From condition (H), we have f (t,u(t))≤ –

 c for t ∈ [, ].
Therefore,

(Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≤
∫ 


G(s, s)f

(
s,u(s)

)
ds

≤ –
 c

∫ 



(
g(s, s) +

m∑
i=

αi

��(pi + q)
gi(η, s)

)
ds

= –
 c

[
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

= c,

which implies ‖Au‖ ≤ c. Hence, A :Pc →Pc.
If u ∈Pa, then condition (H) yields

(Au)(t) < –
 a

∫ 



(
g(s, s) +

m∑
i=

αi

��(pi + q)
gi(η, s)

)
ds

= –
 a

[
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)]

= a.

Thus ‖Au‖ < a. Therefore, condition (ii) of Theorem . holds.
Define a concave nonnegative continuous functional θ on P by θ (u) = mint∈[η,] |u(t)|.

To check condition (i) of Theorem ., we choose u(t) = (b + c)/ for t ∈ [, ]. It is easy
to see that u(t) = (b + c)/ ∈ P(θ ,b, c) and θ (u) = θ ((b + c)/) > b; consequently, the set
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{u ∈ P(θ ,b, c) : θ (u) > b} �= ∅. Hence, if u ∈ P(θ ,b, c), then b ≤ u(t) ≤ c for t ∈ [η, ]. From
condition (H), we have

θ (Au) = min
η≤t≤

∣∣(Au)(t)∣∣
≥

∫ 

η

min
η≤t≤

G(t, s)f
(
s,u(s)

)
ds

> –
 b

m∑
i=

αiη
q–

��(pi + q)

∫ 

η

gi(η, s)ds

= –
 b

[ m∑
i=

αiη
pi+(q–)( – η)q

��(pi + q)q

]

= b.

Thus θ (Au) > b for all u ∈ P(θ ,b, c). This shows that condition (i) of Theorem . is also
satisfied.
We finally show that condition (iii) of Theorem . also holds. Assume that u ∈ P(θ ,b, c)

with ‖Au‖ > d, then we have b ≤ u(t) ≤ c for all t ∈ [η, ]. From (H) and Lemma ., one
has

θ (Au) = min
η≤t≤

∣∣(Au)(t)∣∣
> –

 b
m∑
i=

αiη
q–

��(pi + q)

∫ 

η

gi(η, s)ds

= –
 b

[ m∑
i=

αiη
pi+(q–)( – η)q

��(pi + q)q

]

= b.

So, condition (iii) of Theorem . is satisfied. Therefore, an application of Theorem .
implies that boundary value problem (.)-(.) has at least three positive solutions u, u
and u such that

‖u‖ < a, b < min
η≤t≤

∣∣u(t)∣∣ and a < ‖u‖ with min
η≤t≤

∣∣u(t)∣∣ < b.

The proof is complete. �

5 Examples
In this section, we present some examples to illustrate our results.

Example . Consider the following three-point three-term fractional integral boundary
value problem:

D

 u(t) + f (t,u) = , t ∈ (, ), (.)

u() = , u() =
√

(
I

π
 u

)( 


)
+

π


(
I

 u

)( 


)
+ 

(
I

 u

)( 


)
, (.)
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where

f (t,u) =

{
u( – u) + ( + t);  ≤ t ≤ ;  ≤ u≤ ,
( + t)e–u + sin(uπ );  ≤ t ≤ ; ≤ u < ∞.

Set m = , η = /, q = /, p = π/, p = /, p = /, α =
√
, α = π/, α = , and

we can show that

� =  –
m∑
i=

αiη
pi+q–�(q)

�(pi + q)
≈ ..

Through a simple calculation we can get

 =
m∑
i=

αiη
pi+(q–)

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
≈ .,

 =
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
≈ ..

Choose r = , r = , ρ =  and ρ = , then f (t,u) satisfies

f (t,u) ≥ ≥  = ρr, ∀(t,u) ∈ [, ]× [, ]

and

f (t,u) ≤ ≤  = ρr, ∀(t,u) ∈ [, ]× [, ].

Thus, (H) and (H) hold. By Theorem ., we have that boundary value problem (.)-
(.) has at least one positive solution u such that  < ‖u‖ < .

Example . Consider the following three-point four-term fractional integral boundary
value problem:

D

 u(t) + f (t,u) = , t ∈ (, ), (.){
u() = ,
u() = 

 (I

 u)(  ) +

√

 (I

√
u)(  ) +


 (I

√
πu)(  ) +

√
π

 (I

 u)(  ),

(.)

where

f (t,u) =

{
u(  – u) + ( + t);  ≤ t ≤ ;  ≤ u ≤ /,
( + t) cos( uπ

 ) + 
 (u – 

 )
;  ≤ t ≤ ; / ≤ u < ∞.

Here m = , η = /, q = /, p = /, p =
√
, p =

√
π , p = /, α = /, α =

√
/,

α = /, α =
√

π/, and we can show that

� =  –
m∑
i=

αiη
pi+q–�(q)

�(pi + q)
≈ ..
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Through a simple calculation we can get

 =
m∑
i=

αiη
pi+(q–)

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
≈ .,

 =
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
≈ ..

Choose r = /, r = , ρ =  and ρ = , then f (t,u) satisfies

f (t,u) ≥ ≥ 

= ρr, ∀(t,u) ∈ [, ]× [, /]

and

f (t,u) ≤ ≤  = ρr, ∀(t,u) ∈ [, ]× [, ],

and

lim
u→∞ max

t∈[,]
f (t,u)
u

= lim
u→∞ max

t∈[,]

[
( + t) cos(uπ/) + (/)(u – /)

u

]
=∞.

Thus, (H), (H) and (H) hold. By Theorem ., we have that boundary value problem
(.)-(.) has at least two positive solutions u and u such that  < / < ‖u‖ <  < ‖u‖.

Example . Consider the following three-point five-term fractional integral boundary
value problem:

D

 u(t) + f (t,u) = , t ∈ (, ), (.)⎧⎪⎨

⎪⎩
u() = ,
u() = 

 (I

 u)(  ) +


 (I


 u)(  ) +

√
π

 (I 
 u)(  )

+ 
 (I


 u)(  ) +

√

 (I 

 u)(  ),
(.)

where

f (t,u) =

⎧⎪⎨
⎪⎩
u(  – u) + 

 (t + );  ≤ t ≤ ;  ≤ u ≤ /,

 (t + ) cos(uπ ) + (u – 

 )
;  ≤ t ≤ ; / ≤ u≤ /,


 (t + ) + sin(u – 

 )π ;  ≤ t ≤ ; / ≤ u < ∞.

Set m = , η = /, q = /, p = /, p = /, p = /, p = /, p = /, α = /,
α = /, α =

√
π/, α = /, α =

√
/, and we can show that

� =  –
m∑
i=

αiη
pi+q–�(q)

�(pi + q)
≈ ..

Through a simple calculation we can get

 =
�(q)
�(q)

+
m∑
i=

αiη
pi+q–

��(pi + q)

(
pi + q( – η)
q(pi + q)

)
≈ .,
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 =
m∑
i=

αiη
pi+(q–)( – η)q

��(pi + q)q
≈ ..

Choose a = /, b = / and c = , then f (t,u) satisfies

f (t,u) ≤ 


< .≈ –
 a, ∀(t,u) ∈ [, ]× [, /]

and

f (t,u) ≥ 


> . ≈ –
 b, ∀(t,u) ∈ [/, ]× [/, ],

and

f (t,u) ≤ 


≤ . =–
 c, ∀(t,u) ∈ [, ]× [, ].

Thus, (H), (H) and (H) hold. By Theorem ., we have that boundary value problem
(.)-(.) has at least three positive solutions u, u and u such that ‖u‖ < /, / <
min(/)≤t≤ u(t) and / < ‖u‖ with min(/)≤t≤ u(t) < /.
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