98 research outputs found
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
CpG-Methylation Regulates a Class of Epstein-Barr Virus Promoters
DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian gene regulation. In general, cytosine-phosphatidyl-guanosine (CpG)-methylated promoters are transcriptionally repressed and nuclear proteins such as MECP2, MBD1, MBD2, and MBD4 bind CpG-methylated DNA and contribute to epigenetic silencing. Methylation of viral DNA also regulates gene expression of Epstein-Barr virus (EBV), which is a model of herpes virus latency. In latently infected human B cells, the viral DNA is CpG-methylated, the majority of viral genes is repressed and virus synthesis is therefore abrogated. EBV's BZLF1 encodes a transcription factor of the AP-1 family (Zta) and is the master gene to overcome viral gene repression. In a genome-wide screen, we now identify and characterize those viral genes, which Zta regulates. Among them are genes essential for EBV's lytic phase, which paradoxically depend on strictly CpG-methylated promoters for their Zta-induced expression. We identified novel DNA recognition motifs, termed meZRE (methyl-Zta-responsive element), which Zta selectively binds in order to ‘read’ DNA in a methylation- and sequence-dependent manner unlike any other known protein. Zta is a homodimer but its binding characteristics to meZREs suggest a sequential, non-palindromic and bipartite DNA recognition element, which confers superior DNA binding compared to CpG-free ZREs. Our findings indicate that Zta has evolved to transactivate cytosine-methylated, hence repressed, silent promoters as a rule to overcome epigenetic silencing
Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs
Contains fulltext :
171518.PDF (publisher's version ) (Open Access)In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species
Measurements of branching fraction ratios and CP asymmetries in B-+/- -> DCPK +/- decays in hadron collisions
9 páginas, 3 figuras, 2 tablas.-- PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd.--CDF Collaboration: et al.We reconstruct B-+/- -> DK +/- decays in a data sample collected by the CDF II detector at the Tevatron collider corresponding to 1 fb(-1) of integrated luminosity. We select decay modes where the D meson decays to either K-pi(+) (flavor eigenstate) or K-K+, pi(-)pi(+) (CP-even eigenstates), and measure the direct CP asymmetry A(CP+) = 0.39 +/- 0.17(stat) +/- 0.04(syst), and the double ratio of CP-even to flavor eigenstate branching fractions RCP+ = 1.30 +/- 0.24(stat) +/- 0.12(syst). These measurements will improve the determination of the Cabibbo-Kobayashi-Maskawa angle gamma. They are performed here for the first time using data from hadron collisions.We thank the Fermilab staff and the technical staffs
of the participating institutions for their vital contributions.
This work was supported by the U.S. Department
of Energy and National Science Foundation; the Italian
Istituto Nazionale di Fisica Nucleare; the Ministry of
Education, Culture, Sports, Science and Technology of
Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the
Republic of China; the Swiss National Science Foundation;
the A.P. Sloan Foundation; the Bundesministerium
für Bildung und Forschung, Germany; the Korean Science
and Engineering Foundation and the Korean Research
Foundation; the Science and Technology Facilities
Council and the Royal Society, UK; the Institut National
de Physique Nucleaire et Physique des Particules/CNRS;
the Russian Foundation for Basic Research; the Ministerio
de Ciencia e Innovación, and Programa Consolider-
Ingenio 2010, Spain; the Slovak R&D Agency; and the
Academy of Finland.Peer reviewe
Performance of the ATLAS Trigger System in 2010
Proton-proton collisions at sqrt{s} = 7 TeV and heavy ion collisions at sqrt{s_NN} = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presente
Measurement of the transverse momentum distribution of [Z over γ*] bosons in proton-proton collisions at √s = 7 TeV with the ATLAS detector
A measurement of the [Z over γ*] transverse momentum (p[Z over T]) distribution in proton–proton collisions at √s = 7 TeV is presented using [Z over γ*] →e[superscript +]e[superscript −] and [Z over γ*] →μ[superscript +]μ[superscript −] decays collected with the ATLAS detector in data sets with integrated luminosities of 35 pb[superscript −1] and 40 pb[superscript −1], respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to p[Z over T] of 350 GeV for invariant dilepton masses 66 GeV<m[subscript ℓℓ]<116 GeV. The measurement is compared to predictions of perturbative QCD and various event generators. The prediction of resummed QCD combined with fixed order perturbative QCD is found to be in good agreement with the data.United States. Dept. of EnergyNational Science Foundation (U.S.)Brookhaven National LaboratoryEuropean Organization for Nuclear Researc
Gene expression in human adipose-derived stem cells: comparison of 2D films, 3D electrospun meshes or co-cultured scaffolds with two-way paracrine effects
Finding the appropriate cues to trigger the desired differentiation is a challenge in tissue engineering when stem cells are involved. In this regard, three-dimensional environments are often compared to cells' two-dimensional culture behaviour (plastic culture dish). Here, we compared the gene expression pattern of human adipose-derived stem cells (ASC) seeded in a three-dimensional (3D) electrospun mesh and on a two-dimensional (2D) film - both of exactly the same material. Additionally, we conducted experiments with a scaffold floating above a film to investigate two-way paracrine effects (co-system). Electrospun meshes (3D scaffolds) and films (2D), consisting either of pristine poly-lactic-co-glycolic acid (PLGA) or of PLGA-containing dispersed amorphous calcium phosphate nanoparticles (PLGA/aCaP), were seeded with ASCs and cultured either in Dulbecco Minimum Essential Medium (DMEM) or in osteogenic medium. After two weeks, minimum stem cell criteria markers as well as typical markers for osteogenesis, endothelial cell differentiation, adipogenesis and chondrogenesis were analysed by quantitative real-time PCR. Interestingly, mostly osteogenic genes of cells seeded on 3D meshes were upregulated compared to those on 2D films, while stem cell markers seemed to be only slightly affected. Runx2 and osteocalcin showed an especially strong upregulation under all conditions, while most other factors analysed for 2D/3D changes were highly dependent on the material composition, the culture medium and on paracrine signalling effects. The beneficial 3D environment for stem cells found in many studies has therefore not to be attributed to the third dimension alone and should carefully be compared to 2D films fabricated of the same material. Furthermore, paracrine interactions triggering differentiation are not negligible
Herpes Simplex Virus Infection and Genital Ulcer Disease Among Patients with Sexually Transmitted Infections in Dar es Salaam, Tanzania
Comparison of hospital charges between robotic, laparoscopic stapled, and laparoscopic handsewn Roux-en-Y gastric bypass
- …
