636 research outputs found
Revisiting the He II to H I ratio in the Intergalactic Medium
We estimate the He II to H I column density ratio, \eta = N(He II)/N(H I), in
the intergalactic medium towards the high redshift (z_{em} = 2.885) bright
quasar QSO HE 2347-4342 using Voigt-profile fitting of the H I transitions in
the Lyman series and the He II Lyman- transition as observed by the
FUSE satellite. In agreement with previous studies, we find that in
most of the Lyman- forest except in four regions where it is much
smaller () and therefore inconsistent with photo-ionization by
the UV background flux. We detect O VI and C IV absorption lines associated
with two of these regions ( = 2.6346 and 2.6498). We show that if
we constrain the fit of the H I and/or He II absorption profiles with the
presence of metal components, we can accommodate values in the range
15-100 in these systems assuming broadening is intermediate between pure
thermal and pure turbulent. While simple photo-ionization models reproduce the
observed N(O VI)/N(C IV) ratio, they fail to produce low values contrary
to models with high temperature (i.e T K). The Doppler parameters
measured for different species suggest a multiphase nature of the absorbing
regions. Therefore, if low values were to be confirmed, we would favor a
multi-phase model in which most of the gas is at high temperature ( 10
K) but the metals and in particular C IV are due to lower temperature (
few K) photo-ionized gas.Comment: Accepted for publication in the MNRAS (11 pages, 9 figures, 2 tables
Constraint on the Assembly and Dynamics of Galaxies. II. Properties of Kiloparsec-Scale Clumps in Rest-Frame Optical Emission of z ~ 2 Star-Forming Galaxies
We study the properties of luminous stellar "clumps" identified in deep, high-resolution Hubble Space Telescope NIC2/F160W imaging at 1.6 μm of six z ~ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. Individual clumps contribute ~0.5%-15% of the galaxy-integrated rest-frame ≈5000 Å emission, with median of ≈2%; the total contribution of clump light ranges from 10% to 25%. The median intrinsic clump size and stellar mass are ~1 kpc and ~10^9 M_☉, in the ranges for clumps identified in rest-UV or line emission in other studies. The clump sizes and masses in the subset of disks are broadly consistent with expectations for clump formation through gravitational instabilities in gas-rich, turbulent disks given the host galaxies' global properties. By combining the NIC2 data with Advanced Camera for Surveys (ACS)/F814W imaging available for one source, and adaptive-optics-assisted SINFONI Hα data for another, we infer modest color, M/L, and stellar age variations within each galaxy. In these two objects, sets of clumps identified at different wavelengths do not fully overlap; NIC2-identified clumps tend to be redder/older than ACS- or Hα-identified clumps without rest-frame optical counterparts. There is evidence for a systematic trend of older ages at smaller galactocentric radii among the clumps, consistent with scenarios where inward migration of clumps transports material toward the central regions. From constraints on a bulge-like component at radii ≾1-3 kpc, none of the five disks in our sample appears to contain a compact massive stellar core, and we do not discern a trend of bulge stellar mass fraction with stellar age of the galaxy. Further observations are necessary to probe the buildup of stellar bulges and the role of clumps in this process
Possible Signatures of a Cold-Flow Disk from MUSE using a z=1 galaxy--quasar pair towards SDSSJ1422-0001
We use a background quasar to detect the presence of circum-galactic gas
around a low-mass star forming galaxy. Data from the new Multi Unit
Spectroscopic Explorer (MUSE) on the VLT show that the host galaxy has a
dust-corrected star-formation rate (SFR) of 4.70.2 Msun/yr, with no
companion down to 0.22 Msun/yr (5 ) within 240 kpc (30"). Using a
high-resolution spectrum (UVES) of the background quasar, which is fortuitously
aligned with the galaxy major axis (with an azimuth angle of only
), we find, in the gas kinematics traced by low-ionization lines,
distinct signatures consistent with those expected for a "cold flow disk"
extending at least 12 kpc (). We estimate the mass accretion
rate to be at least two to three times larger than the SFR,
using the geometric constraints from the IFU data and the HI column density of
obtained from a {\it HST}/COS NUV spectrum. From
a detailed analysis of the low-ionization lines (e.g. ZnII, CrII, TiII, MnII,
SiII), the accreting material appears to be enriched to about 0.4
(albeit with large uncertainties: ), which is
comparable to the galaxy metallicity (), implying a
large recycling fraction from past outflows. Blue-shifted MgII and FeII
absorptions in the galaxy spectrum from the MUSE data reveal the presence of an
outflow. The MgII and FeII doublet ratios indicate emission infilling due to
scattering processes, but the MUSE data do not show any signs of fluorescent
FeII* emission.Comment: 17 pages, 11 figures, in press (ApJ), minor edits after the proofs.
Data available at http://muse-vlt.eu/science/j1422
An exact analytical solution for generalized growth models driven by a Markovian dichotomic noise
Logistic growth models are recurrent in biology, epidemiology, market models,
and neural and social networks. They find important applications in many other
fields including laser modelling. In numerous realistic cases the growth rate
undergoes stochastic fluctuations and we consider a growth model with a
stochastic growth rate modelled via an asymmetric Markovian dichotomic noise.
We find an exact analytical solution for the probability distribution providing
a powerful tool with applications ranging from biology to astrophysics and
laser physics
The Impact of cold gas accretion above a mass floor on galaxy scaling relations
Using the cosmological baryonic accretion rate and normal star formation
efficiencies, we present a very simple model for star-forming galaxies (SFGs)
that accounts for the mass and redshift dependencies of the SFR-Mass and
Tully-Fisher relations from z=2 to the present. The time evolution follows from
the fact that each modelled galaxy approaches a steady state where the SFR
follows the (net) cold gas accretion rate. The key feature of the model is a
halo mass floor M_{min}~10^{11} below which accretion is quenched in order to
simultaneously account for the observed slopes of the SFR-Mass and
Tully-Fischer relations. The same successes cannot be achieved via a
star-formation threshold (or delay) nor by varying the SF efficiency or the
feedback efficiency. Combined with the mass ceiling for cold accretion due to
virial shock heating, the mass floor M_{min} explains galaxy "downsizing",
where more massive galaxies formed earlier and over a shorter period of time.
It turns out that the model also accounts for the observed galactic baryon and
gas fractions as a function of mass and time, and the cosmic SFR density from
z~6 to z=0, which are all resulting from the mass floor M_{min}. The model
helps to understand that it is the cosmological decline of accretion rate that
drives the decrease of cosmic SFR density between z~2 and z=0 and the rise of
the cosmic SFR density allows us to put a constraint on our main parameter
M_{min}~10^{11} solar masses. Among the physical mechanisms that could be
responsible for the mass floor, we view that photo-ionization feedback (from
first in-situ hot stars) lowering the cooling efficiency is likely to play a
large role.Comment: 19pages, 14 figures, accepted to ApJ, updated reference
Mergers and Mass Accretion Rates in Galaxy Assembly: The Millennium Simulation Compared to Observations of z~2 Galaxies
Recent observations of UV-/optically selected, massive star forming galaxies
at z~2 indicate that the baryonic mass assembly and star formation history is
dominated by continuous rapid accretion of gas and internal secular evolution,
rather than by major mergers. We use the Millennium Simulation to build new
halo merger trees, and extract halo merger fractions and mass accretion rates.
We find that even for halos not undergoing major mergers the mass accretion
rates are plausibly sufficient to account for the high star formation rates
observed in z~2 disks. On the other hand, the fraction of major mergers in the
Millennium Simulation is sufficient to account for the number counts of
submillimeter galaxies (SMGs), in support of observational evidence that these
are major mergers. When following the fate of these two populations in the
Millennium Simulation to z=0, we find that subsequent mergers are not frequent
enough to convert all z~2 turbulent disks into elliptical galaxies at z=0.
Similarly, mergers cannot transform the compact SMGs/red sequence galaxies at
z~2 into observed massive cluster ellipticals at z=0. We argue therefore, that
secular and internal evolution must play an important role in the evolution of
a significant fraction of z~2 UV-/optically and submillimeter selected galaxy
populations.Comment: 5 pages, 4 figures, Accepted for publication in Ap
Enriched haloes at redshift with no star-formation: Implications for accretion and wind scenarios
[Abridged] In order to understand which process (e.g. galactic winds, cold
accretion) is responsible for the cool (T~10^4 K) halo gas around galaxies, we
embarked on a program to study the star-formation properties of galaxies
selected by their MgII absorption signature in quasar spectra. Specifically, we
searched for the H-alpha line emission from galaxies near very strong z=2 MgII
absorbers (with rest-frame equivalent width EW>2 \AA) because these could be
the sign-posts of outflows or inflows. Surprisingly, we detect H-alpha from
only 4 hosts out of 20 sight-lines (and 2 out of the 19 HI-selected
sight-lines), despite reaching a star-formation rate (SFR) sensitivity limit of
2.9 M/yr (5-sigma) for a Chabrier initial mass function. This low success rate
is in contrast with our z=1 survey where we detected 66%\ (14/21) of the MgII
hosts. Taking into account the difference in sensitivity between the two
surveys, we should have been able to detect >11.4 of the 20 z=2 hosts whereas
we found only 4 galaxies. Interestingly, all the z=2 detected hosts have
observed SFR greater than 9 M/yr, well above our sensitivity limit, while at
z=1 they all have SFR less than 9 M/yr, an evolution that is in good agreement
with the evolution of the SFR main sequence. Moreover, we show that the z=2
undetected hosts are not hidden under the quasar continuum after stacking our
data and that they also cannot be outside our surveyed area. Hence, strong MgII
absorbers could trace star-formation driven winds in low-mass halos (Mhalo <
10^{10.6} Msun). Alternatively, our results imply that z=2 galaxies traced by
strong MgII absorbers do not form stars at a rate expected (3--10 M/yr) for
their (halo or stellar) masses, supporting the existence of a transition in
accretion efficiency at Mhalo ~ 10^{11} Msun. This scenario can explain both
the detections and the non-detections.Comment: 14 pages, 4 fig.; MNRAS in press, minor corrections to match proof
A gravitational lensing explanation for the excess of strong Mg-II absorbers in GRB afterglow spectra
GRB afterglows offer a probe of the intergalactic medium out to high redshift
which complements observations along more abundant quasar lines-of-sight.
Although both quasars and GRB afterglows should provide a-priori random
sight-lines through the intervening IGM, it has been observed that strong Mg-II
absorbers are twice as likely to be found along sight-lines toward GRBs.
Several proposals to reconcile this discrepancy have been put forward, but none
has been found sufficient to explain the magnitude of the effect. In this paper
we estimate the effect of gravitational lensing by galaxies and their
surrounding mass distributions on the statistics of Mg-II absorption. We find
that the multi-band magnification bias could be very strong in the
spectroscopic GRB afterglow population and that gravitational lensing can
explain the discrepancy in density of absorbers, for plausibly steep luminosity
functions. The model makes the prediction that approximately 20%-60% of the
spectroscopic afterglow sample (i.e. ~ 5-15 of 26 sources) would have been
multiply imaged, and hence result in repeating bursts. We show that despite
this large lensing fraction it is likely that none would yet have been
identified by chance owing to the finite sky coverage of GRB searches. We
predict that continued optical monitoring of the bright GRB afterglow locations
in the months and years following the initial decay would lead to
identification of lensed GRB afterglows. A confirmation of the lensing
hypothesis would allow us to constrain the GRB luminosity function down to
otherwise inaccessibly faint levels, with potential consequences for GRB
models.Comment: 8 pages, 3 figures. Submitted to MNRAS
Search for cold gas in strong MgII absorbers at 0.5<z<1.5: nature and evolution of 21-cm absorbers
We report 4 new detections of 21-cm absorption from a systematic search of
21-cm absorption in a sample of 17 strong (Wr(MgII 2796)>1A) intervening MgII
absorbers at 0.5<z<1.5. We also present 20-cm milliarcsecond scale maps of 40
quasars having 42 intervening strong MgII absorbers for which we have searched
for 21-cm absorption. Combining 21-cm absorption measurements for 50 strong
MgII systems from our surveys with the measurements from literature, we obtain
a sample of 85 strong MgII absorbers at 0.5<z<1 and 1.1<z<1.5. We present
detailed analysis of this sample, taking into account the effect of the varying
21-cm optical depth sensitivity and covering factor associated with the
different quasar sight lines. We find that the 21-cm detection rate is higher
towards the quasars with flat or inverted spectral index at cm wavelengths.
About 70% of 21-cm detections are towards the quasars with linear size, LS<100
pc. The 21-cm absorption lines having velocity widths, DeltaV>100 km/s are
mainly seen towards the quasars with extended radio morphology at arcsecond
scales. However, we do not find any correlation between the integrated 21-cm
optical depth or DeltaV with the LS measured from the milliarcsecond scale
images. All this can be understood if the absorbing gas is patchy with a
typical correlation length of ~30-100 pc. We show that within the measurement
uncertainty, the 21-cm detection rate in strong MgII systems is constant over
0.5<z<1.5, i.e., over ~30% of the total age of universe. We show that the
detection rate can be underestimated by up to a factor 2 if 21-cm optical
depths are not corrected for the partial coverage estimated using
milliarcsecond scale maps. Since stellar feedback processes are expected to
diminish the filling factor of cold neutral medium over 0.5<z<1, this lack of
evolution in the 21-cm detection rate in strong MgII absorbers is intriguing.
[abridged]Comment: 28 pages, 14 figures, 9 tables, accepted for publication in Astronomy
and Astrophysic
- …