8,635 research outputs found

    How long has NICE taken to produce Technology Appraisal guidance? A retrospective study to estimate predictors of time to guidance.

    Get PDF
    OBJECTIVES: To assess how long the UK's National Institute for Health and Clinical Excellence's (NICE) Technology Appraisal Programme has taken to produce guidance and to determine independent predictors of time to guidance. DESIGN: Retrospective time to event (survival) analysis. SETTING: Technology Appraisal guidance produced by NICE. DATASOURCE: All appraisals referred to NICE by February 2010 were included, except those referred prior to 2001 and a number that were suspended. OUTCOME MEASURE: Duration from the start of an appraisal (when the scope document was released) until publication of guidance. RESULTS: Single Technology Appraisals (STAs) were published significantly faster than Multiple Technology Appraisals (MTAs) with median durations of 48.0 (IQR; 44.3-75.4) and 74.0 (IQR; 60.9-114.0) weeks, respectively (p <0.0001). Median time to publication exceeded published process timelines, even after adjusting for appeals. Results from the modelling suggest that STAs published guidance significantly faster than MTAs after adjusting for other covariates (by 36.2 weeks (95% CI -46.05 to -26.42 weeks)) and that appeals against provisional guidance significantly increased the time to publication (by 42.83 weeks (95% CI 35.50 to 50.17 weeks)). There was no evidence that STAs of cancer-related technologies took longer to complete compared with STAs of other technologies after adjusting for potentially confounding variables and only weak evidence suggesting that the time to produce guidance is increasing each year (by 1.40 weeks (95% CI -0.35 to 2.94 weeks)). CONCLUSIONS: The results from this study suggest that the STA process has resulted in significantly faster guidance compared with the MTA process irrespective of the topic, but that these gains are lost if appeals are made against provisional guidance. While NICE processes continue to evolve over time, a trade-off might be that decisions take longer but at present there is no evidence of a significant increase in duration

    S 2p photoabsorption of the SF5CF3 molecule: Experiment, theory and comparison with SF6

    Get PDF
    The S 2p core excitation spectrum of the SF5CF3 molecule has been measured in the total ion yield mode. It resembles a lot the analogous spectrum of SF6, also recorded in this study, displaying intense transitions to the empty molecular orbitals both below and above the S 2p ionization potential (IP) and weak transitions to the Rydberg orbitals. The S 2p photoabsorption spectra of SF6 and SF5CF3 have been calculated using time-dependent density functional theory, whereby the spin–orbit coupling was included for the transitions below the S 2p IP. The agreement between experiment and theory is good for both molecules, which allows us to assign the main S 2p absorption features in SF5CF3

    Properties of Ly-alpha and Gamma Ray Burst selected starbursts at high redshifts

    Full text link
    Selection of starbursts through either deep narrow band imaging of redshifted Ly-alpha emitters, or localisation of host galaxies of gamma-ray bursts both give access to starburst galaxies that are significantly fainter than what is currently available from selection techniques based on the continuum (such as Lyman-break selection). We here present results from a survey for Ly-alpha emitters at z=3, conducted at the European Southern Observatory's Very Large Telescope. Furthermore, we briefly describe the properties of host galaxies of gamma-ray bursts at z>2. The majority of both Ly-alpha and gamma-ray burst selected starbursts are fainter than the flux limit of the Lyman-break galaxy sample, suggesting that a significant fraction of the integrated star formation at z~3 is located in galaxies at the faint end of the luminosity function.Comment: invited talk, 6 pages, 3 figures, to appear in ``Starbursts from 30 Doradus to Lyman Break Galaxies'', eds. R. de Grijs, R. M. Gonzalez Delgado, Astrophysics & Space Science Library Series, Kluwer (in press

    BVRI Light Curves for 29 Type Ia Supernovae

    Get PDF
    BVRI light curves are presented for 27 Type Ia supernovae discovered during the course of the Calan/Tololo Survey and for two other SNe Ia observed during the same period. Estimates of the maximum light magnitudes in the B, V, and I bands and the initial decline rate parameter m15(B) are also given.Comment: 17 pages, figures and tables are not included (contact first author if needed), to appear in the Astronomical Journa

    Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.

    Get PDF
    Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata. 2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric. 3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide. 4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large. 5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities

    Effect of aerosol composition on the performance of low-cost optical particle counter correction factors

    Get PDF
    There is considerable interest in using low-cost optical particle counters (OPCs) to supplement existing routine air quality networks that monitor particle mass concentrations. In order to do this, low-cost OPC data need to be comparable with particle mass reference instrumentation; however, there is currently no widely agreed upon methodology to accomplish this. Aerosol hygroscopicity is known to be a key parameter to consider when correcting particle mass concentrations derived from low-cost OPCs, particularly at high ambient relative humidity (RH). Correction factors have been developed that apply Îş-KĂśhler theory to correct for the influence of water uptake by hygroscopic aerosols. We have used datasets of co-located reference particle measurements and low-cost OPC (OPC-N2, Alphasense) measurements, collected in four cities on three continents, to explore the performance of this correction factor. We provide evidence that the elevated particle mass concentrations, reported by the low-cost OPC relative to reference instrumentation, are due to bulk aerosol hygroscopicity under different RH conditions, which is determined by aerosol composition and, in particular, the levels of hygroscopic aerosols (sulfate and nitrate). We exploit measurements made in volcanic plumes in Nicaragua, which are predominantly composed of sulfate aerosol, as a natural experiment to demonstrate this behaviour in the ambient atmosphere; the observed humidogram from these measurements closely resembles the calculated pure sulfuric acid humidogram. The results indicate that the particle mass concentrations derived from low-cost OPCs during periods of high RH (&gt;60 %) need to be corrected for aerosol hygroscopic growth. We employed a correction factor based on Îş-KĂśhler theory and observed that the corrected OPC-N2 PM2.5 mass concentrations were within 33 % of reference measurements at all sites. The results indicated that a Îş value derived in situ (using suitable reference instrumentation) would lead to the most accurate correction relative to co-located reference instruments. Applying a Îş values from the literature in the correction factor also resulted in improved OPC-N2 performance, with the measurements being within 50 % of the reference values. Therefore, for areas where suitable reference instrumentation for developing a local correction factor is lacking, using a literature Îş value can result in a reasonable correction. For locations with low levels of hygroscopic aerosols and low RH values, a simple calibration against gravimetric measurements (using suitable reference instrumentation) would likely be sufficient. Whilst this study generated correction factors specific for the Alphasense OPC-N2 sensor, the calibration methodology developed is likely amenable to other low-cost PM sensors

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore