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Abstract. There is considerable interest in using low-cost op-

tical particle counters (OPCs) to supplement existing routine

air quality networks that monitor particle mass concentra-

tions. In order to do this, low-cost OPC data need to be com-

parable with particle mass reference instrumentation; how-

ever, there is currently no widely agreed upon methodology

to accomplish this. Aerosol hygroscopicity is known to be

a key parameter to consider when correcting particle mass

concentrations derived from low-cost OPCs, particularly at

high ambient relative humidity (RH). Correction factors have

been developed that apply κ-Köhler theory to correct for

the influence of water uptake by hygroscopic aerosols. We

have used datasets of co-located reference particle measure-

ments and low-cost OPC (OPC-N2, Alphasense) measure-

ments, collected in four cities on three continents, to ex-

plore the performance of this correction factor. We provide

evidence that the elevated particle mass concentrations, re-

ported by the low-cost OPC relative to reference instrumen-

tation, are due to bulk aerosol hygroscopicity under different

RH conditions, which is determined by aerosol composition

and, in particular, the levels of hygroscopic aerosols (sul-

fate and nitrate). We exploit measurements made in volcanic

plumes in Nicaragua, which are predominantly composed of

sulfate aerosol, as a natural experiment to demonstrate this

behaviour in the ambient atmosphere; the observed humido-

gram from these measurements closely resembles the calcu-

lated pure sulfuric acid humidogram. The results indicate that

the particle mass concentrations derived from low-cost OPCs

during periods of high RH (>60 %) need to be corrected

for aerosol hygroscopic growth. We employed a correction

factor based on κ-Köhler theory and observed that the cor-

rected OPC-N2 PM2.5 mass concentrations were within 33 %

of reference measurements at all sites. The results indicated

that a κ value derived in situ (using suitable reference instru-

mentation) would lead to the most accurate correction rela-

tive to co-located reference instruments. Applying a κ val-

ues from the literature in the correction factor also resulted

in improved OPC-N2 performance, with the measurements

being within 50 % of the reference values. Therefore, for ar-

eas where suitable reference instrumentation for developing

a local correction factor is lacking, using a literature κ value

can result in a reasonable correction. For locations with low

levels of hygroscopic aerosols and low RH values, a simple

calibration against gravimetric measurements (using suitable

reference instrumentation) would likely be sufficient. Whilst

this study generated correction factors specific for the Al-
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phasense OPC-N2 sensor, the calibration methodology de-

veloped is likely amenable to other low-cost PM sensors.

1 Introduction

Advances in miniaturization technology have led to the de-

velopment of many different kinds of low-cost air pollution

sensors, ranging from passive gas samplers to miniaturized

versions of reference instruments (Lewis et al., 2018; Ja-

yaratne et al., 2018). The term low-cost is relative and typ-

ically refers to the sensor being at least an order of magni-

tude cheaper than corresponding reference instrumentation

(Lewis et al., 2018). Monitoring of key air pollutants (e.g.

PM2.5, NOx and O3) has traditionally been performed via

reference standard or equivalent monitors at fixed monitor-

ing stations. However, this approach can lack the necessary

spatial coverage to properly assess personal exposure due to

significant spatial heterogeneity in the concentration of air

pollutants in urban areas (de Nazelle et al., 2017). Low-cost

sensors are an attractive option due to their reduced costs

and portability, making them viable for mobile or highly spa-

tially resolved measurements, to complement existing moni-

toring frameworks. This has led to low-cost sensors becom-

ing a common feature of an increasing number of air pollu-

tion monitoring operations (Snyder et al., 2013; Morawska et

al., 2018).

The trade-off when using low-cost sensors is that they are

currently not as accurate, precise, selective or sensitive when

compared with research- or regulatory-grade instrumentation

(Mead et al., 2013; Lewis et al., 2016, 2018; Smith et al.,

2017; Crilley et al., 2018; Borrego et al., 2016; Popoola et

al., 2016). Consequently, low-cost sensors of air pollutants

need to be carefully characterized to ensure that they meet

the specific requirements of the intended application (Castell

et al., 2017). In their review, Morawska et al. (2018) con-

cluded that low-cost sensors were appropriate for many ap-

plications, such as supplementing routine air quality mea-

surements and engaging the public and community groups.

However, there is still work needed if low-cost sensors are

to be used for accurate exposure measurements or for com-

pliance monitoring in the future, which are both of particular

interest in under-monitored low- and middle-income coun-

tries (LMICs). LMICs typically have high urban air pollu-

tion, but the resources and infrastructure are sometimes lack-

ing to support continuous classical reference air quality mea-

surements (Pope et al., 2018). One of the challenges with

using low-cost sensors in this setting is that there is currently

no agreed upon methodology for the evaluation of their ac-

curacy and precision as well as their subsequent calibration

(Lewis et al., 2018).

Airborne particulate matter (PM) is a key pollutant for air

monitoring networks due to its well-established detrimen-

tal physical health effects (Cohen et al., 2005; Landrigan et

al., 2018). In particular, exposure to fine particles (PM2.5,

particles with an aerodynamic diameter less than 2.5 µm)

is known to have multiple disease pathways (Landrigan et

al., 2018). Recently, short-term exposure to PM2.5 has been

linked to short-term cognitive decline (Shehab and Pope,

2019). PM2.5 mass regulatory limits are based on the dry

particle mass concentration; thus, regulatory-grade particle

mass instrumentation dries the aerosol before measurement

to record the dry aerosol mass concentrations. Low-cost op-

tical particle counters (OPCs) measure the particle diameter

and number concentrations using light scattering and convert

these measurements to particle mass concentrations by as-

suming particle sphericity and a uniform density. Low-cost

OPCs typically do not dry the aerosol before measurement,

and this can result in an overestimation of the dry particle size

(compared with that which would be determined after dry-

ing) under high-RH conditions (Crilley et al., 2018; Jayaratne

et al., 2018; Di Antonio et al., 2018), which is thought to be

related to the uptake of water by hygroscopic aerosol. Conse-

quently, the reported PM mass concentrations from low-cost

OPCs are the wet particle mass concentrations and need to

be converted to dry particle mass concentrations in order be

comparable with regulatory standards and reference instru-

mentation. One solution to measuring the dry mass of parti-

cles would be the addition of a preconditioning drying step

prior to the OPC measurements; however, this would result

in higher costs, greater power consumption and less instru-

ment portability, thereby reducing the unique selling points

(USPs) of low-cost sensor devices.

Recently, a methodology to correct the wet particle mass

concentrations to dry mass concentrations was proposed by

Crilley et al. (2018) based upon the κ-Köhler theory (Pet-

ters and Kreidenweis, 2007). The κ-Köhler theory describes

the relationship between particle hygroscopicity and volume

using a single value, κ , and it can be adapted to relate parti-

cle mass to average bulk hygroscopicity at a given RH. Cril-

ley et al. (2018) calculated κ values representative of am-

bient bulk hygroscopicity using co-located reference instru-

ments to determine a correction factor for the derived OPC-

N2 (Alphasense) particle mass concentrations. Application

of this in situ correction factor by Crilley and co-workers no-

tably improved the OPC-N2 PM2.5 and PM10 mass concen-

trations to within 33 % of the reference instrumentation at

an urban background location with high ambient RH. Subse-

quently, Di Antonio et al. (2018) proposed a similar method

that applied κ-Köhler theory to correct the particle size dis-

tribution measured by the OPC-N2 and then calculated the

particle mass fraction concentration using this corrected par-

ticle size. Using this approach, Di Antonio and co-workers

also observed notable improvement in the OPC-N2 to within

43 % of the reference PM2.5 mass concentrations. Di Antonio

and co-workers assumed κ values for their correction factor,

based upon the assumed major hygroscopic components of

the aerosol mix (ammonium sulfate and sodium chloride),

which may not be realistic considering the complex multi-

compositional nature of urban particles.

Atmos. Meas. Tech., 13, 1181–1193, 2020 www.atmos-meas-tech.net/13/1181/2020/
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It is clear that the aerosol hygroscopicity is a key param-

eter to consider when correcting particle mass concentration

derived by a low-cost OPC (Crilley et al., 2018; Di Antonio et

al., 2018). Aerosol hygroscopicity is dependent on the chem-

ical compounds present; consequently, the derived correction

factor may vary from location to location due to differences

in the particle bulk composition, shape and density. To inves-

tigate this, we utilized datasets containing co-located parti-

cle measurements from reference instruments and a low-cost

OPC that were collected in four cities on three continents:

Birmingham, UK; Nairobi, Kenya; Delhi, India; and Beijing,

China. Across these four cities, the airborne particle compo-

sition and range of ambient RH varied considerably allow-

ing for the exploration of sensor performance in response

to these factors (composition and RH) and how these fac-

tors affected the calculated correction factors. We also report

measurements taken near a volcano in Nicaragua: a location

that received regular volcanic plumes that contained particles

which were typically chemically homogenous. The aim of

this paper was to investigate whether a universal correction

method can be reasonably applied to reported particle mass

concentrations from low-cost OPCs across a wide variety of

locations.

2 Method

The datasets used in the current work were acquired at dif-

ferent times during several different field campaigns, but the

same type of low-cost particle sensor was deployed at all five

locations – the OPC-N2 manufactured by Alphasense. This

sensor has been described in detail in Sousan et al. (2016)

and Crilley et al. (2018) and can be considered as a minia-

turized optical particle counter. The measured particle num-

ber concentration from the OPC-N2 is converted via an on-

board factory calibration to particle mass concentrations for

the PM1, PM2.5 and PM10 size fractions according to Eu-

ropean Standard EN 481 (OPC-N2 manual). Data collection

with the OPC-N2 followed the procedures outlined in Cril-

ley et al. (2018) at the four urban locations via a Raspberry

Pi computer employing the py-opc Python library (Hagan et

al., 2018). Uncorrected PM mass concentrations were used

without any modification. In Birmingham, Delhi, Beijing and

Nairobi, the OPC-N2 was housed within a custom-built unit

with the same inlet length (12 cm 3/8′′ diameter stainless

steel tubing, see Crilley et al. (2018) for details) and was

placed outside. At Nicaragua, the OPC-N2 was part of the

commercially available AQMesh system (Air Monitors), and

the uncorrected PM concentrations were extracted.

2.1 Measurement locations

All of the sites in this study, other than the volcanic

Nicaraguan site, are classed as urban background with re-

spect to their respective cities. We have focused on PM2.5

mass concentrations in this study, as this particle size frac-

tion was measured by reference instrumentation at all study

sites. We also note that we used a different OPC-N2 sensor at

each site. Previous work has shown that co-located multiple

OPC-N2 sensors have an inter-unit precision of 22±13 % for

PM10 mass concentrations (Crilley et al., 2018). A summary

of the measurement locations is provided in Table 1.

2.1.1 Birmingham, United Kingdom

The OPCs were deployed at two urban background locations

in Birmingham. The first was the Birmingham Air Quality

Supersite at Elms Road (BAQS; 52.4554◦ N, 1.9286◦ W),

which is located on the University of Birmingham campus

(Alam et al., 2015) and will hereafter be referred to as “Bham

BAQS”. The second site was the Tyburn Road air monitor-

ing station, which is part of the UK Automatic Rural Ur-

ban Network (AURN), and will hereafter be referred to as

“Bham Tyburn”. This dataset has previously been described

in Crilley et al. (2018), and the current work focuses on the

long-term measurements (October 2016 to February 2017) at

Bham BAQS, using the OPC-N2 that gave the most complete

time series. The reference instrument for PM2.5 mass concen-

tration measurements at Bham Tyburn was a tapered element

oscillating microbalance with a filter dynamic measurement

system (TEOM-FDMS). The Bham Tyburn dataset is used

for comparison with other sites that had the same reference

instrument (Beijing and Delhi, see Sect. 2.1.2 and 2.1.3). The

reference instrument at Bham BAQS was a GRIMM portable

aerosol sampler (model 1.108) that was serviced and cali-

brated before the measurements. The GRIMM is an OPC-

type device that is similar to the low-cost sensors, but it

does contain a preconditioning step that reduces the internal

RH of the device. Previous work, based on co-located mea-

surements with a TEOM-FDMS, has demonstrated that the

GRIMM is not affected by RH (Crilley et al., 2018).

2.1.2 Beijing, China

The measurements in Beijing formed part of “Air Pollution

and Human Health in a Chinese Megacity”, APHH-Beijing,

which is a joint UK–China programme addressing air qual-

ity in Beijing (Shi et al., 2019). The measurements took place

at the Chinese Academy of Science Institute of Atmospheric

Physics (IAP) tower campus (39.9735◦ N, 116.3723◦ E), lo-

cated in the northern suburbs of Beijing. The OPC-N2 sam-

pled on top of a shipping container at a height of approxi-

mately 2.5 m from 5 to 9 December 2016. In addition, co-

located ground level measurements were obtained from a

TEOM-FDMS set to measure PM2.5 mass concentrations as

well as an Aerodyne aerosol mass spectrometer (AMS; Xu et

al., 2019).

www.atmos-meas-tech.net/13/1181/2020/ Atmos. Meas. Tech., 13, 1181–1193, 2020
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Table 1. Summary of the measurement sites. Full details available in the text. NA signifies not available. Custom housing for the OPC-N2 as

per the description in the text.

Location Site OPC-N2 Reference Aerosol composition

description housing instrument instrument

Birmingham BAQS (Bham BAQS), UK Urban background Custom GRIMM NA

Birmingham Tyburn (Bham Tyburn) , UK Urban background Custom TEOM-FDMS NA

Beijing, China Urban background Custom TEOM-FDMS AMS

Delhi, India Urban background Custom TEOM-FDMS ACSM

Nairobi, Kenya Urban background Custom Gravimetric NA

Masaya volcano, Nicaragua Volcano AQMesh NA NA

2.1.3 Delhi, India

The measurements in Delhi were part of “Air Pollution

and Human Health in an Indian Megacity” (APHH-Delhi,

http://www.urbanair-india.org, last access: 3 March 2020),

which is a joint UK–India programme tackling air pollu-

tion in Delhi. The sampling location was the Indian Insti-

tute of Technology Delhi (IITD) main campus in Hauz Khas

(28.5464◦ N, 77.1913◦ E), which is located in the southern

suburbs of New Delhi. The instruments were located on the

roof (four stories) of Block IV at IITD. The inlet for the co-

located PM2.5 TEOM-FDMS was approximately 5 m from

the OPC-N2 at the same sampling height. On-line measure-

ments of inorganic aerosol concentrations were provided by

an Aerodyne aerosol chemical speciation monitor (ACSM),

located nearby in Block V on the IITD campus, at the same

sampling height (Gani et al., 2019).

2.1.4 Nairobi, Kenya

The measurements in Nairobi have previously been reported

in Pope et al. (2018). These measurements are part of the

“A Systems Approach to Air Pollution” programme (ASAP

East Africa, http://www.asap-eastafrica.com, 3 March 2020).

In the current work, we used the urban background data that

were collected on the rooftop of the American Wing build-

ing at the University of Nairobi (1.2801◦ S, 36.8163◦ E). The

sampling inlet was at a height of 17 m a.g.l. (metres above

ground level) with unobstructed airflow in all directions. The

measurement period was from 2 February to 24 March 2017.

Calibration of the OPC was carried out in situ using a stan-

dardized gravimetric approach that involved co-location of

the OPC with an Anderson dichotomous impactor (Sierra In-

struments Inc., USA).

2.1.5 Masaya volcano, Nicaragua

Masaya is an active volcano that is currently degassing; due

to its low altitude (600 m a.s.l., metres above sea level), the

volcanic plume causes persistent gas and PM air pollution

in nearby populated areas. The results presented are part

of the first study of high temporal and long-term measure-

ments of PM and SO2 concentrations in several populated

areas near the Masaya volcano. Here, we will discuss the

results from station 789, which was set up in Pacaya com-

munity (11.9553◦ N, 86.3013◦ W, 870 m a.s.l.) 15 km to the

west of Masaya volcano. Because it is located at a higher alti-

tude than the degassing crater, the volcanic plume frequently

grounds at this location. The station was set up on a post ap-

proximately 6 m a.g.l. at the Susie Syke private clinic, where

it was not obstructed by vegetation, buildings or other ob-

jects. The site is not believed to be influenced by firewood

burning. It is located ∼ 100 m from a paved highway (that

is busy during the morning and evening rush hours), but it

is upwind of it during the predominant weather conditions.

Measurements were performed using an “AQMesh” pod,

which is a commercially available sensor package. SO2 con-

centrations were measured using an Alphasense B4-series

electrochemical sensor, whereas particle concentrations were

measured by the OPC-N2. Note that uncorrected particle

mass concentrations were extracted from the AQMesh. The

AQMesh was operational between 27 February 2017 and

15 December 2017. Gaps in the data time series are due to

power outages.

2.2 Description of the correction factor applied

The methodology for the correction factor applied has previ-

ously been described in detail by Crilley et al. (2018). Briefly,

the correction factor uses κ-Köhler theory to relate the par-

ticle mass to hygroscopicity for a given RH (Pope, 2010),

according to Eq. (1):

aw =

(

m
mo

− 1
)

(

m
mo

− 1
)

+

(

ρw

ρp
κ

) , (1)

where aw is the water activity (aw = RH/100); m and mo are

the wet and dry (RH = 0 %) particle mass respectively; and

ρw and ρp are the density of the dry particles and water re-

spectively. The value for κ , which relates the bulk aerosol

composition to hygroscopicity, can be determined by the

non-linear curve fitting of a humidogram, calculated using

the ratio of wet/dry particle mass as a function of water ac-

tivity (aw, RH/100). We have used the raw mass concentra-
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tions as reported by the OPC-N2. We utilized the reference

instrument measurements (TEOM-FDMS and GRIMM, as

indicated in Sect. 2.2) as the dry particle mass, whereas

the raw OPC-N2 measurements were the wet particle mass

concentration. The TEOM-FDMS employs a Nafion dryer

and, therefore, measures the dry particle mass concentration

(Grover et al., 2006). Equation (1) can be rearranged to cal-

culate the correction factor C as follows:

C = 1 +

κ
ρp

−1 +
1
aw

. (2)

To calculate the particle mass concentration from the mea-

sured particle number size distribution, spherical particles of

a uniform density and shape are assumed by the OPC; this

is not strictly true for airborne particles in an urban atmo-

sphere but is considered to be a standard approximation. For

full details, see Crilley et al. (2018). The OPC-N2 assumes

the ambient particle density to be 1.65 g cm−3 across all size

bins to derive the particle mass concentrations from the mea-

sured particle number concentrations (Crilley et al., 2018);

therefore, we used this density for the dry particles (ρp) in

Eq. (2). We assume that the particle density is uniform across

the particle size distribution measured by the OPC-N2. Fur-

thermore, we assume that both the OPC-N2 and the reference

instrument respond to dry aerosol mass in the same way for

all particles below the size cut-off on the reference instru-

ment. We also note that we assume that both the OPC-N2

and the reference instrument responses are linear over the

range of measured concentrations at each site. The raw parti-

cle mass concentrations derived by the OPC-N2 are corrected

according to Eq. (3):

PMcorr =
PMraw

C
. (3)

3 Results and discussion

A wide range of ambient particle concentrations and relative

humidity values were observed across the different measure-

ment locations, and an overview of these values is provided

in Table 2. Typically, low particle concentrations were ob-

served in Birmingham and Nairobi with higher humidity lev-

els in Birmingham compared with Nairobi (Table 2). Mean-

while, a high particle load was observed in Delhi and Bei-

jing, as would be expected for winter in these two cities. In

Delhi, there was a wide range of humidities observed (10 %–

100 %), whereas it was relatively dry (median of 35 %) in

Beijing during the measurement periods. The observed dif-

ference in particle load and composition between sites allows

for the effect of relative humidity on the OPC-N2 measure-

ments to be examined and for the applied correction factor to

be explored in the following sections.

3.1 Effect of RH on the OPC-N2 measurements at all

sites

To explore if there was evidence of an artefact in the OPC-

N2-derived PM2.5 mass concentrations due to RH, we plot-

ted the reported PM2.5 mass concentrations from the OPC-

N2 as a function of RH (Fig. 1 and Fig. S1 in the Supple-

ment). From Fig. 1, there is clear influence of RH on the

measurements performed in Delhi and Birmingham, which

is evidenced by the observed exponential increase in parti-

cle mass with RH (Fig. 1a, d). In Beijing, the observed step-

wise increase in the derived measured particle mass between

a RH of 40 % and 50 % may point to deliquescence of a pre-

dominant PM component (Fig. 1c), which is explored fur-

ther in later sections. What was evident from these three sites

(Beijing, Birmingham and Delhi) was that there was a large

spread in the derived PM2.5 mass concentrations at high RH,

which likely reflects the heterogeneous nature of the particle

composition and, hence, hygroscopicity.

Meanwhile at Nairobi, the derived concentrations from the

OPC-N2 appeared to be independent of RH. Typically, dur-

ing the dry season in Nairobi, airborne mineral dust com-

prises a large fraction of PM2.5 (35 % annual mean; Gaita

et al., 2014), which is known to have low hygroscopicity.

Furthermore, we note that the measurements in Nairobi were

performed during the dry season and, as a result, the ambient

RH was typically less than 85 %: this was the threshold RH

value identified in Crilley et al. (2018) at which the OPC-N2

becomes significantly sensitive to RH. Lower humidity lev-

els combined with the low hygroscopicity of the aerosol in

Nairobi was the likely reason why there was little evidence of

a RH artefact observed in the OPC-N2 measurements (Pope

et al., 2018). Therefore, a simple calibration against gravi-

metric measurements is likely to be sufficient in locations

with low RH and a low proportion of hygroscopic aerosols,

such as Nairobi.

As posited in Crilley et al. (2018), the RH artefact in the

OPC-N2 measurements was likely related to the ambient

aerosol bulk hygroscopicity. Therefore, in Fig. 2 we plotted

humidograms for the sites from Fig. 1 that showed evidence

of a RH effect, where reference particle mass concentration

data were available (i.e. Birmingham, Delhi and Beijing; Ta-

ble 2). In Beijing, there were insufficient data at high RH

levels due to the short sampling period (4 d). The factors af-

fecting the response of the OPC-N2 in Beijing are explored

in more detail in Sect. 3.2.1. A quasi-exponential increase in

the ratio the OPC-N2 to reference instrument concentrations

at high RH levels was observed in Birmingham and Delhi,

as would be expected if the aerosols were undergoing hygro-

scopic growth (Fig. 2). Using κ-Köhler theory (Petters and

Kreidenweis, 2007), the calculated κ values were 0.1 and

0.16 for Birmingham and Delhi respectively. These κ values

are typical of continental regions with high organic loadings

(Pringle et al., 2010). While high organic loadings would be

expected for Delhi during winter, there are also significant

www.atmos-meas-tech.net/13/1181/2020/ Atmos. Meas. Tech., 13, 1181–1193, 2020
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Table 2. Summary of measurement datasets. Reported OPC-N2 PM2.5 mass concentrations are uncorrected. For the Nicaragua measure-

ments, there was no co-located reference instrumentation. Only one 24 h average gravimetric PM2.5 concentration was available for Nairobi,

which is presented with the stated measurement uncertainty.

Site Date RH OPC-N2 Reference

(%) PM2.5 PM2.5

(µg m−3) (µg m−3)

Birmingham Oct 2016–Feb 2017 Median 92 15 8.7

First, third quartiles 84, 97 7, 50 5.6, 13

Range 44–99 0.3–566 0.5–63

Beijing Dec 2016 Median 35 47 65

First, third quartiles 25, 43 7, 96 10, 134

Range 13–81 3–274 2.7–208

Delhi Jan–Feb 2018 Median 62 127 164

First, third quartiles 37, 80 52, 301 110, 207

Range 9–100 12–1113 50–478

Nairobi Feb–Mar 2017 Median 51 28

First, third quartiles 37, 66 21, 41 27.6 ± 6.8

Range 16–89 4–135

Nicaragua Feb–Dec 2017 Median 81 6.6

First, third quartiles 69, 86 3.5, 15 NA

Range 39–91 0.5–742

loadings of hygroscopic aerosols such as sulfate and nitrate

(Gani et al., 2019), which is explored in more detail in the

following. Differences in aerosol composition would likely

explain why the calculated κ value at Bham BAQS (0.1) was

lower than that observed at Bham Tyburn (0.38–0.41; Cril-

ley et al., 2018). Previous work in Birmingham has demon-

strated that the proportion of ammonium sulfate and nitrate

decreases in winter compared with summer (Yin et al., 2010),

which may explain the observed lower κ value over winter.

What becomes evident from Fig. 2 is that different κ val-

ues were observed at each site. If the aerosol composition

was broadly similar at each site, we would expect the same κ

value. This suggests that the aerosol composition varies sig-

nificantly over the different measurement sites. The scatter in

the OPC / TEOM observed in Fig. 2 as a function of RH was

likely due to temporal variability in the aerosol composition

due to changing sources and sinks (both local and regional).

3.2 Effect of aerosol composition on the OPC-N2 RH

correction factor

3.2.1 Mixed aerosol composition (urban)

To explore the effect of aerosol composition on the correc-

tion factor for the OPC-N2, we first focus on the Beijing

and Delhi measurements (as co-located on-line aerosol com-

position data were available at these two sites). During the

measurements in Beijing, there were periods when the OPC-

N2 and TEOM were in reasonable agreement, which typi-

cally occurred at lower PM concentrations (as observed by

the regulatory-grade equipment). Figure 3a demonstrates that

there was linear relationship between the reported OPC-N2

and TEOM concentrations at concentrations below approxi-

mately 150 µg m−3 (r2 of 0.85), with a slope of 0.72. When

the PM2.5 mass concentrations were above 150 µg m−3, the

relationship appeared to deviate from linearity, although

these were also the times when the RH was higher (>50 %,

Fig. 3a). Generally, periods of high RH also corresponded

to periods of relatively high sulfate concentrations (Fig. 3b)

and, to a lesser extent, high particle nitrate concentrations

(Fig. S2). Both nitrate and sulfate aerosol have high hygro-

scopicities (Petters and Kreidenweis, 2007).

Similar trends were also observed in the Delhi measure-

ments. Generally, at low RH there appears to be a linear rela-

tionship between the reported OPC-N2 and TEOM concen-

trations (Fig. 4a), but this deviates from linearity at high RH,

which is similar to the behaviour observed in Beijing. For pe-

riods when the ambient RH in Delhi was less than 50 %, we

observed that the OPC-N2 generally recorded PM2.5 mass

concentrations that were half those of the TEOM (slope of

0.48 and r2 of 0.55). This was broadly similar to the be-

haviour observed in Beijing (Fig. 3a) and suggests that the

OPC-N2 generally under-reports PM2.5 mass concentrations

at low RH (<50 %). It is also apparent from Fig. 4a that there

were times in Delhi when the RH was high (>80 %), but the

PM2.5 mass concentrations from the OPC-N2 showed a sim-

ilar relationship to the TEOM measurements as that seen at

low RH levels.
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Figure 1. Plot of the reported PM2.5 mass concentration from the

OPC-N2 against ambient RH for the whole measurement period in

Delhi (a), Nairobi (b), Beijing (c), Bham BAQS (d), Nicaragua (e)

and Bham Tyburn (f). Note the different y and x axis scales.

Therefore, we plotted the relationship of the OPC-N2 and

TEOM PM2.5 mass concentrations coloured by the sum of

the sulfate and nitrate concentrations (Fig. 4b, see Fig. S3 in

the Supplement for individual plots of sulfate and nitrate);

generally, when the concentration of these species and the

RH were high, we observed notably higher OPC-N2 con-

centrations relative to the reference. Both sulfate and nitrate

are highly hygroscopic aerosols which suggests that the high

readings by the OPC-N2 relative to the TEOM in Beijing

and Delhi were due to water uptake by hygroscopic particles,

as suggested by Crilley et al. (2018). From Figs. 3 and 4, it

appears that this effect occurred at RH values above 50 %,

which is below the deliquescence point of ammonium sulfate

(79 %) and indicates that the ammonium sulfate component

of the aerosol was in a metastable state. Aerosols with multi-

component mixtures are observed to deliquesce earlier than

the deliquescence points of the individual components (e.g.

Pope et al., 2010). It is noted that the nitrate component of

Figure 2. Humidograms with the corresponding κ fit (shown in

colour) for Delhi (a), Beijing (b), Bham BAQS (c) and Bham Ty-

burn (d). Note the different y axis and x axis scales. The two-stage

correction factor described in Sect. 3.3.1 has not been applied for

these humidograms.

Figure 3. Derived OPC-N2 uncorrected PM2.5 mass concentrations

against TEOM PM2.5 mass concentration measurements coloured

by ambient RH (a) and the fraction of sulfate to the total PM2.5

mass (b) in Beijing. The straight line indicates the linear regression

fit for concentrations below 150 µg m−3. The dashed line is the 1 : 1

line.

the aerosols have a smoother continual uptake of water with

respect to RH (Gibson et al., 2006; Hu et al., 2010).

3.2.2 Homogenous aerosol composition (volcano

plume)

The composition of fresh volcanic plumes are typically dom-

inated by sulfuric acid; therefore, these plumes offer an op-

portunity to explore the use of κ-Köhler theory to develop

the correction factor in a substantially homogenous aerosol

mix under ambient conditions. If the RH artefact is due

to aerosol hygroscopicity, the resultant humidogram using

data collected by the OPC-N2 in the plume should resem-

ble that for sulfuric acid. To derive the volcanic plume hu-

midogram, shown in Fig. 5, the following steps were taken:

the plume was identified at station 789 when the co-located
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Figure 4. Derived OPC-N2 uncorrected PM2.5 mass concentrations

against TEOM PM2.5 mass concentration measurements coloured

by (a) ambient RH and (b) the sum of the particle sulfate and ni-

trate concentrations in Delhi. The solid line is the 1 : 1 line, and the

dashed lines are the 0.5 : 1 and 2 : 1 lines.

Figure 5. Comparison of humidograms from pure sulfuric acid and

the Nicaragua volcanic plume. Circles denote the Nicaragua plume

aerosol, and the dashed line represents the modelled sulfuric acid

humidogram from the E-AIM model.

gas phase SO2 measurement was greater than 20 ppm; the

aerosol within the plume was assumed to be composed solely

of sulfuric acid with a corresponding κ value of 1.19 (Wexler

and Clegg, 2002); the dry mass of the volcanic particles

were calculated using Eq. (1), with a RH input from the co-

located measurements at site 789; and the derived humido-

gram was compared with the pure sulfuric acid humidogram

calculated using the Extended Aerosol Inorganics Model (E-

AIM, Model I; Fig. 5). The observed agreement between the

model and measurements strongly points to particle hygro-

scopic growth driving the high particle mass concentrations

observed by the OPC-N2 at high RH.

3.3 Evaluation of the OPC-N2 performance in Delhi

and Birmingham

During the measurements in Delhi, the OPC-N2 typically

over-reported the PM2.5 mass concentrations relative to the

reference (Fig. 6a). The OPC-N2 assumes a uniform particle

density of 1.65 g cm−3 in the particle counts to mass conver-

sion, and this density may be inappropriate for Delhi aerosol

during winter. Previous measurements of aerosol density dur-

ing winter in Delhi at midday were 1.28±0.12 g cm−3 on av-

erage (Sarangi et al., 2016), which is lower than that applied

by the OPC-N2. Generally, the OPC / TEOM ratio was be-

Figure 6. Time series of reported OPC-N2 and TEOM-FDMS

PM2.5 mass concentrations (a) and ambient RH (b) at IIT Delhi.

low 1 (Fig. 2a) and would not fully explain this discrepancy.

Is can be noted from Fig. 6a that higher PM2.5 mass concen-

trations relative to the reference were reported by the OPC-

N2 towards the start of the measurement period (Fig. 6a),

generally during periods of high RH (e.g. 25–29 January,

Fig. 6b). We also note that the reported concentrations from

the OPC-N2 towards the end of the measurements in Delhi

(11 February onwards, Fig. 6a) were in better agreement with

reference. The cause of this change in performance is un-

clear, but it could reflect lower RH values or changes in the

aerosol composition.

As the reported OPC-N2 concentrations in Birmingham

and Delhi demonstrated an artefact due to RH (Fig. 2), we

applied the correction factor from Crilley et al. (2018), using

the in situ locally derived κ values. In addition, the κ value

for ammonium sulfate (0.61) was also used, as Di Antonio et

al. (2018) suggested it may be more representative for urban

aerosols. The results for the correction factors relative to the

co-located reference instruments are summarized in Table 3.

Compared with the uncorrected OPC-N2 concentrations, the

application of a correction factor with both κ values resulted

in improved performance of the reported concentrations rel-
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Table 3. Slopes of uncorrected and corrected PM2.5 mass concen-

trations from the OPC-N2 relative to the reference instruments (r2

in parentheses). Intercepts were not constrained to zero. There were

four OPC-N2 sensors measuring at Bham Tyburn, and the range of

measurements from these instruments is presented.

Corrected

Uncorrected Locally κ for

derived κ NH4SO4

Bham BAQS 3.5 (0.24) 1.3 (0.44) 0.5 (0.24)

Delhi 1.73 (0.33) 1.1 (0.60) 0.55 (0.60)

Bham Tyburn 2.5–3.5 0.98–1.33 0.72–0.98

(0.64–0.67) (0.82–0.85) (0.84–0.86)

ative to the reference. However, the use of the locally derived

κ resulted in the best correction of the OPC-N2 (to within

33 % of the reference measurements) compared with using

the ammonium sulfate κ value (Table 3).

We also observed that the ratio of OPC-N2 / GRIMM con-

centrations was low at high RH at Bham BAQS (Fig. 2c). The

spread in OPC / GRIMM ratios observed at high RH at Bham

BAQS is indicative of a diverse aerosol composition with dif-

fering hygroscopicity over the 4 months. With respect to the

calculated κ value for each month in Birmingham, very lit-

tle variability (0.1–0.12) was found from October to January

which suggests that the bulk hygroscopicity of the aerosols

was consistent on average, although within a large range (as

indicated by the large spread in the OPC / TEOM ratio in

Fig. 2c).

3.3.1 Two-stage correction methodology for datasets

with a wide range of ambient RH values

For the Delhi dataset, the observed wide range of ambient

RH values may have affected the correction factor (Fig. 2),

as particle hygroscopic growth would be limited at low RH.

Consequently, at low RH, defined as a RH less than 60 %,

a linear correction factor may be more appropriate. From

Fig. 2, there appeared to be a linear relationship between the

OPC-N2 and TEOM PM2.5 measurements for RH values less

60 %. Therefore, we calculated a linear correction factor for

the OPC-N2 relative to the TEOM when the ambient RH was

less than 60 % (Fig. S4) and applied it to the reported OPC-

N2 PM2.5 concentrations. Using these normalized OPC-N2

concentrations, the humidogram was replotted (Fig. 7), and

the corresponding κ fit was calculated (Fig. 7). With the

above-mentioned normalized OPC-N2 measurements, the κ

line is also a better fit to the observed OPC / TEOM (Fig. 7)

compared with using the uncorrected OPC-N2 data (Fig. 2).

The calculated κ value from Fig. 7 was 0.45, which may be

considered more realistic considering the high sulfate and ni-

trate loading in Delhi (Fig. 4). Using the κ from Fig. 7, we

corrected the normalized OPC-N2 PM2.5 concentrations us-

ing Eqs. (2) and (3). The time series of the corrected OPC-N2

Figure 7. Humidograms for Delhi using the normalized OPC-N2

PM2.5 mass concentrations with the corresponding κ fit.

concentrations is shown in Fig. S5, and the application of this

two-stage correction method resulted in the OPC-N2 being in

good agreement with the reference instrument (slope of 1.1,

r2 of 0.61). However, we note that this is similar to the agree-

ment observed when the OPC-N2 was corrected without the

two-stage approach (Table 3). Nevertheless, the two-stage

approach resulted in more physically realistic humidograms

and κ values (Fig. 7) for Delhi, and this approach may be

more appropriate for locations that experience a wide range

of ambient RH values.

3.4 The global applicability of correction factors

The results so far point to the need to establish the aerosol

composition in order to accurately apply a suitable correc-

tion factor, which is in agreement with previous work (Di

Antonio et al., 2018; Crilley et al., 2018). However, the de-

termination of the aerosol composition at the necessary time

resolution would require expensive co-located equipment to

measure the aerosol composition (e.g. an aerosol mass spec-

trometer), and this would somewhat negate the USPs of a

low-cost monitor. Di Antonio et al. (2018) suggested that the

air mass origin (determined using HYSPLIT) could provide

compositional information in order to determine the appro-

priate κ value to use in the correction. Therefore, we ex-

amined the long-term Birmingham dataset for times when

the correction factor that was applied over/under-corrected

the OPC-N2 mass concentrations relative to reference instru-

ment. However, unlike Di Antonio et al. (2018), we could

not find any consistent patterns with respect to air mass ori-

gin and the performance of the correction factor. Further-

more, the application of a correction factor using this ap-

proach would require significant post-processing time. This

raises the question of whether the method would then remain

a “low-cost” option or not.

To remain a low-cost option, a simple correction that can

be applied to the OPC-N2 irrespective of aerosol composi-

tion changes is needed, although this may decrease the ac-

curacy of the correction factor. For many locations around

the world, ambient PM2.5 mass concentrations are measured

using gravimetric-based techniques (e.g. filters or TEOM)

for regulatory purposes. Consequently, we focused on de-
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Figure 8. Humidogram using OPC-N2 data where there was dry

reference mass (TEOM), coloured by location. The resultant κ fit

(black) was generated using data from all three sites.

veloping a simple correction factor using TEOM data as

a reference. To explore if this was viable, we plotted the

OPC / TEOM ratio for all sites where it was available (Bham

Tyburn, Delhi and Beijing) on one plot (Fig. 8). Note we used

the two-stage correction for the OPC-N2 measurements in

Delhi, as described in Sect. 3.3.1, for Fig. 8. We did not ap-

ply this correction to the Bham Tyburn data as the RH was

higher than 60 %.

From Fig. 8, a κ value of 0.33 (assuming a uniform particle

density of 1.65 for all sites) was calculated, which is slightly

higher than the average of 0.3 suggested for continental re-

gions (Pringle et al., 2010). Consequently, we refer to the

calculated κ value from Fig. 8 as global κ , but we note that

it was calculated from three urban background sites on two

continents. We applied this κ (0.33) to correct the OPC-N2

data at all sites as well as the average for continental regions

(0.3), and the results are summarized in Table 4. Variation in

the κ values generally resulted in changes in the slope, while

the correlation co-efficient remained similar. While the κ

value that was derived in situ resulted in a reasonable correc-

tion of the OPC-N2 relative to the reference (±10 %–30 %,

Table 4), using the κ from Fig. 8 (0.33) was comparable. Cor-

recting the datasets using the global κ of 0.33 resulted in an

agreement with the reference instruments of within 50 % at

all sites, with the Beijing, Delhi and some of the Bham Ty-

burn corrected OPC-N2 values being within 20 % of the ref-

erence (Table 4). The only site with a notably poorer agree-

ment using the global compared with the in situ κ value was

Bham BAQS, and this may be because the locally derived

κ value for the Bham BAQS measurements (0.1) was differ-

ent from the other sites. This notwithstanding, we do note

that using a κ value of 0.33 resulted in a significant improve-

ment in accuracy compared with the uncorrected OPC-N2-

Table 4. Comparison of the performance of the local and global

correction factors for correcting OPC-N2 measurements using the

Crilley et al. (2018) method: shown as a slope relative to the refer-

ence instrument with the r2 values given in parentheses. Intercepts

were not constrained to zero.

Site Correction Global Continental

derived (κ = 0.33) average

in situ (κ = 0.3)

Bham 0.98–1.33 1.1–1.5 1.2–1.6

Tyburn (0.82–0.85) (0.82–0.85) (0.82–0.85)

Delhi 1.1 (0.60) 0.80 (0.61) 0.84 (0.61)

Bham BAQS 0.96 (0.42) 0.54 (0.45) 0.57 (0.45)

Beijing 1.35 (0.87) 0.85 (0.85) 0.87 (0.85)

derived particle mass concentrations at Bham BAQS (slope

of 3.5, Table 3). Overall, when considering the most appro-

priate correction or κ value, the results from Table 3 suggest

that a locally derived κ value, based on an in situ calibration

with reference instrumentation, is preferable. However, the

global κ value derived using data from the three urban back-

ground locations in this study (0.33, Fig. 8) gave comparable

results to the correction that was derived in situ (Table 4).

Therefore, this suggests that using this κ value or a suitable

value from the literature for urban background sites may be

acceptable should there be no reference instruments available

for calibration.

4 Conclusions

Recent work has demonstrated that aerosol hygroscopicity is

likely the key parameter to consider when correcting particle

mass concentrations derived using a low-cost OPC, particu-

larly at high ambient RH. Consequently, correction factors

have been developed that apply κ-Köhler theory to correct

for the influence of water uptake by hygroscopic aerosols. In

the current work, we explored the performance of this cor-

rection factor using datasets from reference instruments and

low-cost OPCs (OPC-N2) co-located in environments that

had differing aerosol compositions, particle loads and am-

bient RH values. We observed evidence that the enhanced

high concentrations reported by the OPC-N2 relative to ref-

erence instrumentation during periods of high RH were re-

lated to the amount of hygroscopic aerosols (sulfate and ni-

trate) and RH, which would be expected if the bulk aerosol

hygroscopicity was driving this response. This was most

clearly observed during measurements in volcanic plumes

in Nicaragua, where the observed humidogram closely re-

sembled the calculated pure sulfuric acid humidogram. This

agreement between the model and measurements strongly

points to particle hygroscopic growth driving the high par-

ticle mass concentrations observed by the OPC-N2 during

times of high ambient RH.
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The results indicate that the particle mass concentration

measurements reported by low-cost OPCs during periods of

high RH (>60 %) need to be corrected for aerosol hygro-

scopic growth. We employed the correction factor method

outlined in Crilley et al. (2018) to account for this and ob-

served corrected OPC-N2 PM2.5 mass concentrations to be

within 33 % of the reference at all sites. The choice of the

κ value applied was found to be critical. The results from

the current work indicate that a κ value derived in situ (using

suitable reference instrumentation) leads to the most accurate

correction relative to co-located reference instruments. The κ

value derived in situ would also likely be dependent on the

time of year if there were any local seasonality to the bulk

aerosol composition, and this would need to be considered

when determining appropriate calibration procedures.

An average κ value of 0.33 was calculated using mea-

surements from three urban locations around the globe (Bei-

jing, Birmingham and Delhi). Applying this global κ value

in the correction factor notably improved the reported OPC-

N2 PM2.5 mass concentrations, relative to the uncorrected

measurements, to within 50 % of reference measurements

at all sites. Therefore, for areas where suitable reference

instrumentation for developing a local correction factor is

lacking, using a literature κ value can result in a reason-

able correction. For locations with low levels of hygroscopic

aerosols and low RH (such as Nairobi), a simple calibration

against gravimetric measurements (using suitable reference

instrumentation) would likely be sufficient. Whilst this study

specifically generated correction factors for the Alphasense

OPC-N2 sensor, the calibration methodology developed is

likely amenable to other low-cost PM sensors.
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era, F., Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J.,

Salinas, C., Samson, L. D., Sandilya, K., Sly, P. D., Smith, K.

R., Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C.

P., Yadama, G. N., Yumkella, K., and Zhong, M.: The Lancet

Commission on pollution and health, The Lancet, 391, 462–512,

https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.

Lewis, A., Peltier, W. R., and von Schneidemesser, E.: Low-

cost sensors for the measurement of atmospheric composition:

Overview of topic and future applications, Research Report,

World Meteorological Organization (WMO), Geneva, Switzer-

land, 2018.

Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J.,

Moller, S. J., Smith, K. R., Buckley, J. W., Ellis, M., Gillot, S. R.,

and White, A.: Evaluating the performance of low cost chemical

sensors for air pollution research, Faraday Discuss., 189, 85–103,

https://doi.org/10.1039/C5FD00201J, 2016.

Mead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff,

P., Calleja, M., Hayes, M., Baldovi, J. J., McLeod, M. W.,

Hodgson, T. F., Dicks, J., Lewis, A., Cohen, J., Baron,

R., Saffell, J. R., and Jones, R. L.: The use of electro-

chemical sensors for monitoring urban air quality in low-

cost, high-density networks, Atmos. Environ., 70, 186–203,

https://doi.org/10.1016/j.atmosenv.2012.11.060, 2013.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G.,

Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin,

M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K.

H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins,

B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro,

D., Westerdahl, D., and Williams, R.: Applications of low-cost

sensing technologies for air quality monitoring and exposure as-

sessment: How far have they gone?, Environ. Int., 116, 286–299,

https://doi.org/10.1016/j.envint.2018.04.018, 2018.

Petters, M. D. and Kreidenweis, S. M.: A single parameter

representation of hygroscopic growth and cloud condensa-

tion nucleus activity, Atmos. Chem. Phys., 7, 1961–1971,

https://doi.org/10.5194/acp-7-1961-2007, 2007.

Pope, F. D.: Pollen grains are efficient cloud condensation nuclei,

Environ. Res. Lett., 5, 044015, https://doi.org/10.1088/1748-

9326/5/4/044015, 2010.

Pope, F. D., Dennis-Smither, B. J., Griffiths, P. T., Clegg, S. L., and

Cox, R. A.: Studies of Single Aerosol Particles Containing Mal-

onic Acid, Glutaric Acid, and Their Mixtures with Sodium Chlo-

ride. I. Hygroscopic Growth, J. Phys. Chem. A, 114, 5335–5341,

https://doi.org/10.1021/jp100059k, 2010.

Pope, F. D., Gatari, M., Ng’ang’a, D., Poynter, A., and Blake,

R.: Airborne particulate matter monitoring in Kenya using cali-

brated low-cost sensors, Atmos. Chem. Phys., 18, 15403–15418,

https://doi.org/10.5194/acp-18-15403-2018, 2018.

Popoola, O. A. M., Stewart, G. B., Mead, M. I., and Jones,

R. L.: Development of a baseline-temperature correction

methodology for electrochemical sensors and its implica-

tions for long-term stability, Atmos. Environ., 147, 330–343,

https://doi.org/10.1016/j.atmosenv.2016.10.024, 2016.

Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.:

Global distribution of the effective aerosol hygroscopicity pa-

rameter for CCN activation, Atmos. Chem. Phys., 10, 5241–

5255, https://doi.org/10.5194/acp-10-5241-2010, 2010.

Sarangi, B., Aggarwal, S. G., Sinha, D., and Gupta, P. K.: Aerosol

effective density measurement using scanning mobility par-

ticle sizer and quartz crystal microbalance with the estima-

Atmos. Meas. Tech., 13, 1181–1193, 2020 www.atmos-meas-tech.net/13/1181/2020/



L. R. Crilley: Effect of aerosol composition on low-cost OPC correction factors 1193

tion of involved uncertainty, Atmos. Meas. Tech., 9, 859–875,

https://doi.org/10.5194/amt-9-859-2016, 2016.

Shehab, M. A. and Pope, F. D.: Effects of short-term exposure

to particulate matter air pollution on cognitive performance,

Sci. Rep., 9, 8237, https://doi.org/10.1038/s41598-019-44561-0,

2019.

Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue,

S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. E., Ren,

L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J.,

Barratt, B., Beddows, D., Bloss, W. J., Calzolai, G., Carruthers,

D., Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, Y., Cril-

ley, L., Coe, H., Dai, T., Doherty, R., Duan, F., Fu, P., Ge, B.,

Ge, M., Guan, D., Hamilton, J. F., He, K., Heal, M., Heard, D.,

Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones,

R., Kalberer, M., Kelly, F. J., Kramer, L., Langford, B., Lin, C.,

Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M., Lu, K.,

Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G.,

Monk, P., Nemitz, E., O’Connor, F., Ouyang, B., Palmer, P. I.,

Percival, C., Popoola, O., Reeves, C., Rickard, A. R., Shao, L.,

Shi, G., Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S.,

Tong, S., Wang, Q., Wang, W., Wang, X., Wang, X., Wang, Z.,

Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P., Yang, F., Zhang,

Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to the spe-

cial issue “In-depth study of air pollution sources and processes

within Beijing and its surrounding region (APHH-Beijing)”, At-

mos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-

19-7519-2019, 2019.

Smith, K. R., Edwards, P., Evans, M. J., Lee, J. D., Shaw, M. D.,

Squires, F. A., and Lewis, A.: Clustering approaches to improve

the performance of low cost air pollution sensors, Faraday Dis-

cuss., 200, 1–15, 2017.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D.,

Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A.,

Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air

Pollution Monitoring, Environ. Sci. Technol., 47, 11369–11377,

https://doi.org/10.1021/es4022602, 2013.

Sousan, S., Koehler, K., Hallett, L., and Peters, T. M.: Evaluation

of the Alphasense optical particle counter (OPC-N2) and the

Grimm portable aerosol spectrometer (PAS-1.108), Aerosol. Sci.

Tech., 50, 1352–1365, 2016.

Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for

systems including the ions H+, NH+

4
, Na+, SO2−

4
, NO−

3
, Cl−,

Br−, and H2O, 107, J. Geophys. Res.-Atmos., 107, ACH 14-11–

ACH 14-14, https://doi.org/10.1029/2001JD000451, 2002.

Yin, J., Harrison, R. M., Chen, Q., Rutter, A., and Schauer, J. J.:

Source apportionment of fine particles at urban background and

rural sites in the UK atmosphere, Atmos. Environ., 44, 841–851,

https://doi.org/10.1016/j.atmosenv.2009.11.026, 2010.

Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie,

C., Zhou, W., Du, W., Li, J., Fu, P., Wang, Z., Worsnop, D.

R., and Coe, H.: Changes in Aerosol Chemistry from 2014

to 2016 in Winter in Beijing: Insights from High Resolution

Aerosol Mass Spectrometry, J. Geophys. Res., 124, 1132–1147,

https://doi.org/10.1029/2018JD029245, 2019.

www.atmos-meas-tech.net/13/1181/2020/ Atmos. Meas. Tech., 13, 1181–1193, 2020


	Abstract
	Introduction
	Method
	Measurement locations
	Birmingham, United Kingdom
	Beijing, China
	Delhi, India
	Nairobi, Kenya
	Masaya volcano, Nicaragua

	Description of the correction factor applied

	Results and discussion
	Effect of RH on the OPC-N2 measurements at all sites
	Effect of aerosol composition on the OPC-N2 RH correction factor
	Mixed aerosol composition (urban)
	Homogenous aerosol composition (volcano plume)

	Evaluation of the OPC-N2 performance in Delhi and Birmingham
	Two-stage correction methodology for datasets with a wide range of ambient RH values

	The global applicability of correction factors

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

