13 research outputs found

    Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials

    Get PDF
    YesFundus-controlled perimetry (FCP, also called 'microperimetry') allows for spatially-resolved mapping of visual sensitivity and measurement of fixation stability, both in clinical practice as well as research. The accurate spatial characterization of visual function enabled by FCP can provide insightful information about disease severity and progression not reflected by best-corrected visual acuity in a large range of disorders. This is especially important for monitoring of retinal diseases that initially spare the central retina in earlier disease stages. Improved intra- and inter-session retest-variability through fundus-tracking and precise point-wise follow-up examinations even in patients with unstable fixation represent key advantages of these technique. The design of disease-specific test patterns and protocols reduces the burden of extensive and time-consuming FCP testing, permitting a more meaningful and focused application. Recent developments also allow for photoreceptor-specific testing through implementation of dark-adapted chromatic and photopic testing. A detailed understanding of the variety of available devices and test settings is a key prerequisite for the design and optimization of FCP protocols in future natural history studies and clinical trials. Accordingly, this review describes the theoretical and technical background of FCP, its prior application in clinical and research settings, data that qualify the application of FCP as an outcome measure in clinical trials as well as ongoing and future developments

    The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea

    No full text
    Depth zonation on coral reefs is largely driven by the amount of downwelling, photosynthetically active radiation (PAR) that is absorbed by the symbiotic algae (zooxanthellae) of corals. The minimum light requirements of zooxanthellae are related to both the total intensity of downwelling PAR and the spectral quality of the light. Here we used Stylophora pistillata colonies collected from shallow (3m) and deep (40m) water; colonies were placed in a respirometer under both ambient PAR irradiance and a filter that only transmits blue light. We found that the colonies exhibited a clear difference in their photosynthetic rates when illuminated under PAR and filtered blue light, with higher photosynthetic performance when deep colonies were exposed to blue light compared with full-spectrum PAR for the same light intensity and duration. By contrast, colonies from shallow water showed the opposite trend, with higher photosynthetic performances under full-spectrum PAR than under filtered blue light. These findings are supported by the absorption spectra of corals, with deeper colonies absorbing higher energy wavelengths than the shallow colonies, with different spectral signatures. Our results indicate that S. pistillata colonies are chromatically adapted to their surrounding light environment, with photoacclimation probably occurring via an increase in photosynthetic pigments rather than algal density. The spectral properties of the downwelling light are clearly a crucial component of photoacclimation that should be considered in future transplantation and photoacclimation studies

    Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy

    No full text

    A Comprehensive Review of Retinal Gene Therapy

    No full text

    Chemotaxis by natural populations of coral reef bacteria

    Full text link
    © 2015 International Society for Microbial Ecology. All rights reserved. Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont
    corecore