701 research outputs found

    Atrial fibrillation in sub-saharan Africa: epidemiology, unmet needs, and treatment options

    Get PDF
    Health care in Sub-Saharan Africa is being challenged by a double burden of disease as lifestyle diseases common in the developed world, such as stroke and atrial fibrillation (AF), increase, while, simultaneously, health issues of the developing world in terms of communicable disease persist. The prevalence of AF is lower in Africa than in the developed world but is expected to increase significantly over the next few decades. Patients with AF in Africa tend to be younger and have a higher prevalence of rheumatic valvular heart disease than patients with AF in other regions. Permanent AF is the most prevalent type of AF in Africa, possibly due to the lower use of rhythm control strategies than in the developed world. Mortality rates of patients with AF in Africa are high, due largely to poor health care access and suboptimal therapy. The risk of stroke in AF, which is moderate to high in Africans as in the developed world, contributes to the high mortality rate. Patients with AF in Africa are often undertreated with antithrombotics, as cost and access to monitoring are major barriers. Vitamin K antagonists, including warfarin, are the most commonly available oral anticoagulants, but regular monitoring can be challenging, especially for patients in remote areas. Several non-vitamin K antagonist oral anticoagulants (NOACs) have been approved for use in countries across Sub-Saharan Africa and have the potential to reduce stroke burden. The higher cost of newer agents may be offset by the reduced need for regular monitoring, fixed dosing, and lower risk of intracranial bleeding; NOACs could provide a treatment option for patients in remote areas with limited access to regular monitoring. However, NOACs are not indicated in valvular AF. More work is needed to increase understanding of the epidemiology of AF and stroke, as well as to improve management strategies to reduce the burden of cardiovascular disease predicted for Africa

    Duration of heart failure and the risk of atrial fibrillation: different mechanisms at different times?

    Get PDF
    Chronic heart failure increases the risk of atrial fibrillation (AF), with the prevalence of AF paralleling the severity of heart failure.1 Factors that underlie this increased susceptibility to AF may include electrical, structural, and neurohumoral changes.2 In AF, it is recognized that atrial electrophysiological remodelling occurs and contributes to the perpetuation of the arrhythmia, most notably the decrease of effective refractory period (ERP) which predisposes to re-entry by shortening the wavelength. Does heart failure cause similar changes in atrial electrophysiology that predispose to the arrhythmia

    Weighted Secret Sharing from Wiretap Channels

    Get PDF
    Secret-sharing allows splitting a piece of secret information among a group of shareholders, so that it takes a large enough subset of them to recover it. In weighted secret-sharing, each shareholder has an integer weight, and it takes a subset of large-enough weight to recover the secret. Schemes in the literature for weighted threshold secret sharing either have share sizes that grow linearly with the total weight, or ones that depend on huge public information (essentially a garbled circuit) of size (quasi)polynomial in the number of parties. To do better, we investigate a relaxation, (?, ?)-ramp weighted secret sharing, where subsets of weight ? W can recover the secret (with W the total weight), but subsets of weight ? W or less cannot learn anything about it. These can be constructed from standard secret-sharing schemes, but known constructions require long shares even for short secrets, achieving share sizes of max(W,|secret|/?), where ? = ?-?. In this note we first observe that simple rounding let us replace the total weight W by N/?, where N is the number of parties. Combined with known constructions, this yields share sizes of O(max(N,|secret|)/?). Our main contribution is a novel connection between weighted secret sharing and wiretap channels, that improves or even eliminates the dependence on N, at a price of increased dependence on 1/?. We observe that for certain additive-noise (?,?) wiretap channels, any semantically secure scheme can be naturally transformed into an (?,?)-ramp weighted secret-sharing, where ?,? are essentially the respective capacities of the channels ?,?. We present two instantiations of this type of construction, one using Binary Symmetric wiretap Channels, and the other using additive Gaussian Wiretap Channels. Depending on the parameters of the underlying wiretap channels, this gives rise to (?, ?)-ramp schemes with share sizes |secret|?log N/poly(?) or even just |secret|/poly(?)

    Innate and Adaptive Immunity in Aging and Longevity: The Foundation of Resilience

    Get PDF
    The interrelation of the processes of immunity and senescence now receives an unprecedented emphasis during the COVID-19 pandemic, which brings to the fore the critical need to combat immunosenescence and improve the immune function and resilience of older persons. Here we review the historical origins and the current state of the science of innate and adaptive immunity in aging and longevity. From the modern point of view, innate and adaptive immunity are not only affected by aging but also are important parts of its underlying mechanisms. Excessive levels or activity of antimicrobial peptides, C-reactive protein, complement system, TLR/NF-κB, cGAS/STING/IFN 1,3 and AGEs/RAGE pathways, myeloid cells and NLRP3 inflammasome, declined levels of NK cells in innate immunity, thymus involution and decreased amount of naive T-cells in adaptive immunity, are biomarkers of aging and predisposition factors for cellular senescence and aging-related pathologies. Long-living species, human centenarians, and women are characterized by less inflamm-aging and decelerated immunosenescence. Despite recent progress in understanding, the harmonious theory of immunosenescence is still developing. Geroprotectors targeting these mechanisms are just emerging and are comprehensively discussed in this article

    Selected Solo Music for Saxophone by United States Composers: 1975-2005

    Get PDF
    This dissertation project identifies important works for solo saxophone by United States composers between 1975 and 2005. The quality, variety, expressiveness, and difficulty of the solo saxophone repertoire during these thirty years is remarkable and remedies, to some extent, the fact that the saxophone had been a largely neglected instrument in the realm of classical music. In twentieth-century music, including Jazz, the saxophone developed, nevertheless, a unique and significant voice as is evident in the saxophone repertoire that expands immensely in many instrumental settings, including the orchestra, solo works, and a wide variety of chamber ensembles. Historically, the saxophone in the United States first found its niche in Vaudeville, military bands, and jazz ensembles, while in Europe composers such as Debussy, D'Indy, Schmitt, Ibert, Glazounov, Heiden, and Desenclos recognized the potential of the instrument and wrote for it. The saxophone is well suited to the intimacy and unique timbral explorations of the solo literature, but only by the middle twentieth century did the repertoire allow the instrument to flourish into a virtuosic and expressive voice presented by successive generations of performers – Marcel Mule, Sigurd Rascher, Cecil Leeson, Jean-Marie Londeix, Fred Hemke, Eugene Rousseau, and Donald Sinta. The very high artistic level of theses soloists was inspiring and dozens of new compositions were commissioned. Through the 1960’s American composers such as Paul Creston, Leslie Bassett, Henry Cowell, Alec Wilder, and others produced eminent works for the saxophone, to be followed by an enormous output of quality compositions between 1975 and 2005. The works chosen for performance were selected from thousands of compositions between 1975 and 2005 researched for this project. The three recital dates were: April 6, 2005, in Gildenhorn Recital Hall, December 4, 2005, in Ulrich Recital Hall, and April 15, 2006, in Gildenhorn Recital Hall. Recordings of these recitals may be obtained in person or online from the Michelle Smith Performing Arts Library of the University of Maryland, College Park

    Uncoupling Between Dinitrogen Fixation and Primary Productivity in the Eastern Mediterranean Sea

    Get PDF
    In the nitrogen (N)-impoverished photic zones of many oceanic regions, prokaryotic organisms fixing atmospheric dinitrogen (N2; diazotrophs) supply an essential source of new nitrogen and fuel primary production. We measured dinitrogen fixation and primary productivity (PP) during the thermally stratified summer period in different water regimes of the oligotrophic eastern Mediterranean Sea, including the Cyprus Eddy and the Rhodes Gyre. Low N2 fixation rates were measured (0.8-3.2μmol N m-2 d-1) excluding 10-fold higher rates in the Rhodes Gyre and Cyprus Eddy (~20μmol N m-2 d-1). The corresponding PP increased from east to west (200-2500μmol C m-2 d-1), with relatively higher productivity recorded in the Rhodes Gyre and Cyprus Eddy (2150 and 2300μmol C m-2 d-1, respectively). These measurements demonstrate that N2 fixation in the photic zone of the eastern Mediterranean Sea contributes only negligibly by direct inputs to PP (i.e., cyanobacterial diazotrophs) and is in fact uncoupled from PP. By contrast, N2 fixation is significantly coupled to bacterial productivity and to net heterotrophic areas, suggesting that heterotrophic N2 fixation may in fact be significant in this ultraoligotrophic system. This is further substantiated by the high N2 fixation rates we measured from aphotic depths and by the results of phylogenetic analysis in other studies showing an abundance of heterotrophic diazotrophs

    Management of Long QT Syndrome in Women Before, During, and After Pregnancy

    Get PDF
    Congenital long QT syndrome (LQTS) is a primary genetic and electrical disorder that increases risk for torsades de pointes, syncope, and sudden death. Post-pubertal women with LQTS require specialized multidisciplinary management before, during, and after pregnancy involving cardiology and obstetrics to reduce risk for cardiac events in themselves and their fetuses and babies. The risk of potentially life-threatening events is lower during pregnancy but increases significantly during the 9-month postpartum period. Treatment of women with LQTS with a preferred β-blocker at optimal doses along with close monitoring are indicated throughout pregnancy and during the high-risk postpartum period

    Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba

    Get PDF
    Bioassay experiments were performed to identify how growth of key groups within the microbial community was simultaneously limited by nutrient (nitrogen and phosphorus) availability during spring in the Gulf of Aqaba's oceanic waters. Measurements of chlorophyll a (chl a) concentration and fast repetition rate (FRR) fluorescence generally demonstrated that growth of obligate phototrophic phytoplankton was co-limited by N and P and growth of facultative aerobic anoxygenic photoheterotropic (AAP) bacteria was limited by N. Phytoplankton exhibited an increase in chl a biomass over 24 to 48 h upon relief of nutrient limitation. This response coincided with an increase in photosystem II (PSII) photochemical efficiency (F v /F m), but was preceded (within 24 h) by a decrease in effective absorption crosssection (σPSII) and electron turnover time (τ). A similar response for τ and bacterio-chl a was observed for the AAPs. Consistent with the up-regulation of PSII activity with FRR fluorescence were observations of newly synthesized PSII reaction centers via low temperature (77K) fluorescence spectroscopy for addition of N (and N + P). Flow cytometry revealed that the chl a and thus FRR fluorescence responses were partly driven by the picophytoplankton (æ10 μm) community, and in particular Synechococcus. Productivity of obligate heterotrophic bacteria exhibited the greatest increase in response to a natural (deep water) treatment, but only a small increase in response to N and P addition, demonstrating the importance of additional substrates (most likely dissolved organic carbon) in moderating the heterotrophs. These data support previous observations that the microbial community response (autotrophy relative to heterotrophy) is critically dependent upon the nature of transient nutrient enrichment. © Inter-Research 2009

    Weighted Secret Sharing from Wiretap Channels

    Get PDF
    Secret-sharing allows splitting a piece of secret information among a group of shareholders, so that it takes a large enough subset of them to recover it. In \emph{weighted} secret-sharing, each shareholder has an integer weight, and it takes a subset of large-enough weight to recover the secret. Schemes in the literature for weighted threshold secret sharing either have share sizes that grow linearly with the total weight, or ones that depend on huge public information (essentially a garbled circuit) of size (quasi)polynomial in the number of parties. To do better, we investigate a relaxation, (α,β)(\alpha, \beta)-ramp weighted secret sharing, where subsets of weight βW\beta W can recover the secret (with WW the total weight), but subsets of weight αW\alpha W or less cannot learn anything about it. These can be constructed from standard secret-sharing schemes, but known constructions require long shares even for short secrets, achieving share sizes of max(W,secretϵ)\max\big(W,\frac{|\mathrm{secret}|}{\epsilon}\big), where ϵ=βα\epsilon=\beta-\alpha. In this note we first observe that simple rounding let us replace the total weight WW by N/ϵN/\epsilon, where NN is the number of parties. Combined with known constructions, this yields share sizes of O(max(N,secret)/ϵ)O\big(\max(N,|\mathrm{secret}|)/{\epsilon}\big). Our main contribution is a novel connection between weighted secret sharing and wiretap channels, that improves or even eliminates the dependence on~NN, at a price of increased dependence on 1/ϵ1/\epsilon. We observe that for certain additive-noise (R,A)(R,A) wiretap channels, any semantically secure scheme can be naturally transformed into an (α,β)(\alpha,\beta)-ramp weighted secret-sharing, where α,β\alpha,\beta are essentially the respective capacities of the channels A,RA,R. We present two instantiations of this type of construction, one using Binary Symmetric wiretap Channels, and the other using additive Gaussian Wiretap Channels. Depending on the parameters of the underlying wiretap channels, this gives rise to (α,β)(\alpha, \beta)-ramp schemes with share sizes secret/poly(ϵlogN)|\mathrm{secret}|/\mathrm{poly}(\epsilon\log N) or even just secret/poly(ϵ)|\mathrm{secret}|/\mathrm{poly}(\epsilon)

    A system in balance? ? Implications of deep vertical mixing for the nitrogen budget in the northern Red Sea, including the Gulf of Aqaba (Eilat)

    No full text
    International audienceWe investigated the implications of deep winter mixing for the nitrogen budget in two adjacent systems, the northern Red Sea proper, and the Gulf of Aqaba. Both are subtropical oligotrophic water bodies. The main difference is that in the gulf deep winter mixing takes place regularly, whereas the northern Red Sea proper is permanently stratified. In the Gulf of Aqaba, we observed significantly lower nitrate deficits, i.e. deviations from the Redfield ratio, than in the northern Red Sea proper. Assuming that other external inputs and losses in N or P are very similar in both systems, the higher nitrate deficit can be explained by either lower nitrogen fixation in the (stratified) northern Red Sea, which seems unlikely. An alternative explanation would be higher rates of benthic denitrification than in the gulf. By comparing the two systems we have indirect evidence that benthic denitrification was much lower in the Gulf of Aqaba due to higher oxygen concentrations. This we attributed to the occurrence of deep winter mixing, and as a consequence, the nitrate deficit was close to zero (i.e. N:P ratio close to "Redfield"). If both nitrogen fixation and benthic denitrification take place, as in the northern Red Sea proper, the result was a positive nitrate deficit (i.e. a deficit in nitrate) in the ambient water. The nitrate deficit in the northern Red Sea was observed in spite of high iron deposition from the surrounding desert. Our results strongly support the concept of nitrogen as the proximate, and phosphate as the ultimate limiting nutrient for primary production in the sea. This must not be neglected in efforts for protecting the adjacent reefs against eutrophication
    corecore