81 research outputs found

    Neurotoxic Shellfish Poisoning

    Get PDF
    Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented

    Web-based Investigation of Multistate Salmonellosis Outbreak

    Get PDF
    We investigated a large outbreak of Salmonella enterica serotype Javiana among attendees of the 2002 U.S. Transplant Games, including 1,500 organ transplant recipients. Web-based survey methods identified pre-diced tomatoes as the source of this outbreak, which highlights the utility of such investigative tools to cope with the changing epidemiology of foodborne diseases

    5-HT2A receptor signalling through phospholipase D1 associated with its C-terminal tail

    Get PDF
    The 5-HT2AR (5-hydroxytryptamine-2A receptor) is a GPCR (G-protein-coupled receptor) that is implicated in the actions of hallucinogens and represents a major target of atypical antipsychotic agents. In addition to its classical signalling though PLC (phospholipase C), the receptor can activate several other pathways, including ARF (ADP-ribosylation factor)-dependent activation of PLD (phospholipase D), which appears to be achieved through a mechanism independent of heterotrimeric G-proteins. In the present study we show that wild-type and inactive constructs of PLD1 (but not PLD2) respectively facilitate and inhibit ARF-dependent PLD signalling by the 5-HT2AR. Furthermore we demonstrate that PLD1 specifically co-immunoprecipitates with the receptor and binds to a distal site in GST (glutathione transferase) fusion protein constructs of its C-terminal tail which is distinct from the ARF-interaction site, thereby suggesting the existence of a functional ARF-PLD signalling complex directly associated with this receptor. This reveals the spatial co-ordination of an important GPCR, transducer and effector into a physical complex that is likely to reinforce the impact of receptor activation on a heterotrimeric G-protein-independent signalling pathway. Signalling of this receptor through such non-canonical pathways may be important to its role in particular disorders

    Improved reference genome uncovers novel sex-linked regions in the Guppy (Poecilia reticulata)

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Oxford University Press via the DOI in this recordData availability: Population genomics data are available on ENA: Study: PRJEB10680 PCR-free data are available on ENA: Study PRJEB36450 Genome assembly is available on ENA ID: PRJEB36704; ERP119926 All scripts and pipelines are available on github: https://github.com/bfrasercommits/guppy_genomeTheory predicts that the sexes can achieve greater fitness if loci with sexually antagonistic polymorphisms become linked to the sex determining loci, and this can favour the spread of reduced recombination around sex determining regions. Given that sex-linked regions are frequently repetitive and highly heterozygous, few complete Y chromosome assemblies are available to test these ideas. The guppy system (Poecilia reticulata) has long been invoked as an example of sex chromosome formation resulting from sexual conflict. Early genetics studies revealed that male colour patterning genes are mostly but not entirely Y-linked, and that X-linkage may be most common in low predation populations. More recent population genomic studies of guppies have reached varying conclusions about the size and placement of the Y-linked region. However, this previous work used a reference genome assembled from short-read sequences from a female guppy. Here, we present a new guppy reference genome assembly from a male, using long-read PacBio single-molecule real-time sequencing (SMRT) and chromosome contact information. Our new assembly sequences across repeat- and GC-rich regions and thus closes gaps and corrects mis-assemblies found in the short-read female-derived guppy genome. Using this improved reference genome, we then employed broad population sampling to detect sex differences across the genome. We identified two small regions that showed consistent male-specific signals. Moreover, our results help reconcile the contradictory conclusions put forth by past population genomic studies of the guppy sex chromosome. Our results are consistent with a small Y-specific region and rare recombination in male guppies.Max Planck SocietyEuropean Research Council (ERC)Natural Environment Research Council (NERC

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P &lt; 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    R (2008) Neurotoxic shellfish poisoning

    No full text
    Abstract: Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented
    corecore