829 research outputs found

    Inhibition of breathing after surfactant depletion is achieved at a higher arterial PCO(2 )during ventilation with liquid than with gas

    Get PDF
    BACKGROUND: Inhibition of phrenic nerve activity (PNA) can be achieved when alveolar ventilation is adequate and when stretching of lung tissue stimulates mechanoreceptors to inhibit inspiratory activity. During mechanical ventilation under different lung conditions, inhibition of PNA can provide a physiological setting at which ventilatory parameters can be compared and related to arterial blood gases and pH. OBJECTIVE: To study lung mechanics and gas exchange at inhibition of PNA during controlled gas ventilation (GV) and during partial liquid ventilation (PLV) before and after lung lavage. METHODS: Nine anaesthetised, mechanically ventilated young cats (age 3.8 ± 0.5 months, weight 2.3 ± 0.1 kg) (mean ± SD) were studied with stepwise increases in peak inspiratory pressure (PIP) until total inhibition of PNA was attained before lavage (with GV) and after lavage (GV and PLV). Tidal volume (V(t)), PIP, oesophageal pressure and arterial blood gases were measured at inhibition of PNA. One way repeated measures analysis of variance and Student Newman Keuls-tests were used for statistical analysis. RESULTS: During GV, inhibition of PNA occurred at lower PIP, transpulmonary pressure (Ptp) and Vt before than after lung lavage. After lavage, inhibition of inspiratory activity was achieved at the same PIP, Ptp and Vt during GV and PLV, but occurred at a higher PaCO(2 )during PLV. After lavage compliance at inhibition was almost the same during GV and PLV and resistance was lower during GV than during PLV. CONCLUSION: Inhibition of inspiratory activity occurs at a higher PaCO(2 )during PLV than during GV in cats with surfactant-depleted lungs. This could indicate that PLV induces better recruitment of mechanoreceptors than GV

    Depression and Sexual Orientation During Young Adulthood: Diversity Among Sexual Minority Subgroups and the Role of Gender Nonconformity.

    Get PDF
    Sexual minority individuals are at an elevated risk for depression compared to their heterosexual counterparts, yet less is known about how depression status varies across sexual minority subgroups (i.e., mostly heterosexuals, bisexuals, and lesbians and gay men). Moreover, studies on the role of young adult gender nonconformity in the relation between sexual orientation and depression are scarce and have yielded mixed findings. The current study examined the disparities between sexual minorities and heterosexuals during young adulthood in concurrent depression near the beginning of young adulthood and prospective depression 6 years later, paying attention to the diversity within sexual minority subgroups and the role of gender nonconformity. Drawn from the National Longitudinal Study of Adolescent Health (N = 9421), we found that after accounting for demographics, sampling weight, and sampling design, self-identified mostly heterosexual and bisexual young adults, but not lesbians and gay men, reported significantly higher concurrent depression compared to heterosexuals; moreover, only mostly heterosexual young adults were more depressed than heterosexuals 6 years later. Furthermore, while young adult gender nonconforming behavior was associated with more concurrent depression regardless of sexual orientation, its negative impact on mental health decreased over time. Surprisingly, previous gender nonconformity predicted decreased prospective depression among lesbians and gay men whereas, among heterosexual individuals, increased gender nonconformity was not associated with prospective depression. Together, the results suggested the importance of investigating diversity and the influence of young adult gender nonconformity in future research on the mental health of sexual minorities.The authors acknowledge support for this research: the University of Arizona Norton School of Family and Consumer Sciences Fitch Nesbitt Endowment and a University of Arizona Graduate Access Fellowship to the second author. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (http://​www.​cpc.​unc.​edu/​addhealth). No direct support was received from grant P01-HD31921 for this analysis. The authors thank Noel Card and Susan Stryker for comments on the previous versions of this article and Richard Lippa and Katerina Sinclair for methodological and statistical consult. The authors also thank the anonymous reviewers and the Editor for their helpful comments.This is the accepted manuscript of a paper published in Archives of Sexual Behavior (Li G, Pollitt AM, Russell ST, Archives of Sexual Behavior 2015, doi:10.1007/s10508-015-0515-3). The final version is available at http://dx.doi.org/10.1007/s10508-015-0515-3

    Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions

    Get PDF
    Malignant gliomas contain a population of self-renewing tumorigenic stem-like cells; however, it remains unclear how these glioma stem cells (GSCs) self-renew or generate cellular diversity at the single-cell level. Asymmetric cell division is a proposed mechanism to maintain cancer stem cells, yet the modes of cell division that GSCs utilize remain undetermined. Here, we used single-cell analyses to evaluate the cell division behavior of GSCs. Lineage-tracing analysis revealed that the majority of GSCs were generated through expansive symmetric cell division and not through asymmetric cell division. The majority of differentiated progeny was generated through symmetric pro-commitment divisions under expansion conditions and in the absence of growth factors, occurred mainly through asymmetric cell divisions. Mitotic pair analysis detected asymmetric CD133 segregation and not any other GSC marker in a fraction of mitoses, some of which were associated with Numb asymmetry. Under growth factor withdrawal conditions, the proportion of asymmetric CD133 divisions increased, congruent with the increase in asymmetric cell divisions observed in the lineage-tracing studies. Using single-cell-based observation, we provide definitive evidence that GSCs are capable of different modes of cell division and that the generation of cellular diversity occurs mainly through symmetric cell division, not through asymmetric cell division

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    The human DNA glycosylases NEIL1 and NEIL3 excise psoralen-induced DNA-DNA cross-links in a four-stranded DNA structure

    Get PDF
    Interstrand cross-links (ICLs) are highly cytotoxic DNA lesions that block DNA replication and transcription by preventing strand separation. Previously, we demonstrated that the bacterial and human DNA glycosylases Nei and NEIL1 excise unhooked psoralen-derived ICLs in three-stranded DNA via hydrolysis of the glycosidic bond between the crosslinked base and deoxyribose sugar. Furthermore, NEIL3 from Xenopus laevis has been shown to cleave psoralen- and abasic site-induced ICLs in Xenopus egg extracts. Here we report that human NEIL3 cleaves psoralen-induced DNA-DNA cross-links in three-stranded and four-stranded DNA substrates to generate unhooked DNA fragments containing either an abasic site or a psoralen-thymine monoadduct. Furthermore, while Nei and NEIL1 also cleave a psoralen-induced four-stranded DNA substrate to generate two unhooked DNA duplexes with a nick, NEIL3 targets both DNA strands in the ICL without generating single-strand breaks. The DNA substrate specificities of these Nei-like enzymes imply the occurrence of long uninterrupted three- and four-stranded crosslinked DNA-DNA structures that may originate in vivo from DNA replication fork bypass of an ICL. In conclusion, the Nei-like DNA glycosylases unhook psoralen-derived ICLs in various DNA structures via a genuine repair mechanism in which complex DNA lesions can be removed without generation of highly toxic double-strand breaks
    corecore