182 research outputs found
Recommended from our members
Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals
For the preparation of electrically conductive composites, various combinations of cellulose and conducting materials such as polymers, metals, metal oxides and carbon have been reported. The conductivity of these cellulose composites reported to date ranges from 10−6 to 103 S cm−1. Cellulose nanocrystals (CNCs) are excellent building blocks for the production of high added value coatings. The essential process steps for preparing such coatings, i.e. surface modification of CNCs dispersed in water and/or alcohol followed by application of the dispersion to substrate samples using dip coating, are low cost and easily scalable. Here, we present coatings consisting of Ag modified CNCs that form a percolated network upon solvent evaporation. After photonic sintering, the resulting coatings are electrically conductive with an unprecedented high conductivity of 2.9 × 104 S cm−1. Furthermore, we report the first colloidal synthesis that yields CNCs with a high degree of Ag coverage on the surface, which is a prerequisite for obtaining coatings with high electrical conductivity. © 2017, The Author(s)
Surface Engineering Methods for Powder Bed Printed Tablets to Optimize External Smoothness and Facilitate the Application of Different Coatings
In a previous attempt to achieve ileo-colonic targeting of bovine intestinal alkaline phosphatase (BIAP), we applied a pH-dependent coating, the ColoPulse coating, directly on powder bed printed (PBP) tablets. However, the high surface roughness necessitated an additional sub-coating layer [Nguyen, K. T. T., Pharmaceutics 2022]. In this study, we aimed to find a production method for PBP tablets containing BIAP that allows the direct application of coating systems. Alterations of the printing parameters, binder content, and printing layer height, when combined, were demonstrated to create visually less rough PBP tablets. The addition of ethanol vapor treatment further improved the surface’s smoothness significantly. These changes enabled the direct application of the ColoPulse, or enteric coating, without a sub-coating. In vitro release testing showed the desired ileo-colonic release or upper-intestinal release for ColoPulse or enteric-coated tablets, respectively. Tablets containing BIAP, encapsulated within an inulin glass, maintained a high enzymatic activity (over 95%) even after 2 months of storage at 2–8 °C. Importantly, the coating process did not affect the activity of BIAP. In this study, we demonstrate, for the first time, the successful production of PBP tablets with surfaces that are directly coatable with the ColoPulse coating while preserving the stability of the encapsulated biopharmaceutical, BIAP.</p
Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron
We study the underlying event in proton-antiproton collisions by examining
the behavior of charged particles (transverse momentum pT > 0.5 GeV/c,
pseudorapidity |\eta| < 1) produced in association with large transverse
momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the
Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV
center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan
production) or the leading jet (in high-pT jet production) in each event to
define three regions of \eta-\phi space; toward, away, and transverse, where
\phi is the azimuthal scattering angle. For Drell-Yan production (excluding the
leptons) both the toward and transverse regions are very sensitive to the
underlying event. In high-pT jet production the transverse region is very
sensitive to the underlying event and is separated into a MAX and MIN
transverse region, which helps separate the hard component (initial and
final-state radiation) from the beam-beam remnant and multiple parton
interaction components of the scattering. The data are corrected to the
particle level to remove detector effects and are then compared with several
QCD Monte-Carlo models. The goal of this analysis is to provide data that can
be used to test and improve the QCD Monte-Carlo models of the underlying event
that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.
Measurement of the Production Cross Section and Search for Anomalous and Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the boson
pair production cross section and most sensitive test of anomalous
and couplings in collisions at a center-of-mass energy of 1.96
TeV. The candidates are reconstructed from decays containing two charged
leptons and two neutrinos, where the charged leptons are either electrons or
muons. Using data collected by the CDF II detector from 3.6 fb of
integrated luminosity, a total of 654 candidate events are observed with an
expected background contribution of events. The measured total
cross section is pb, which is in good agreement
with the standard model prediction. The same data sample is used to place
constraints on anomalous and couplings.Comment: submitted to Phys. Rev. Let
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
First Observation of Electroweak Single Top Quark Production
submitted to Phys. Rev. LettWe report the first observation of single top quark production using 3.2 fb^-1 of pbar p collision data with sqrt{s}=1.96 TeV collected by the Collider Detector at Fermilab. The significance of the observed data is 5.0 standard deviations, and the expected sensitivity for standard model production and decay is in excess of 5.9 standard deviations. Assuming m_t=175 GeV/c^2, we measure a cross section of 2.3 +0.6 -0.5 (stat+syst) pb, extract the CKM matrix element value |V_{tb}|=0.91 +-0.11 (stat+syst) 0.07(theory), and set the limit |V_{tb}|>0.71 at the 95% C.L.We report the observation of single top-quark production using 3.2 fb-1 of pp̅ collision data with √s=1.96 TeV collected by the Collider Detector at Fermilab. The significance of the observed data is 5.0 standard deviations, and the expected sensitivity for standard model production and decay is in excess of 5.9 standard deviations. Assuming mt=175 GeV/c2, we measure a cross section of 2.3-0.5+0.6(stat+syst) pb, extract the CKM matrix-element value |Vtb|=0.91±0.11(stat+syst)±0.07(theory), and set the limit |Vtb|>0.71 at the 95% C.L.Peer reviewe
Observation of Single Top Quark Production and Measurement of |Vtb| with CDF
Submitted to Phys. Rev. DWe report the observation of electroweak single top quark production in 3.2 fb-1 of ppbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3+0.6-0.5(stat+sys) pb, extract the CKM matrix element value |Vtb|=0.91+0.11-0.11 (stat+sys)+-0.07(theory), and set a lower limit |Vtb|>0.71 at the 95% confidence level, assuming m_t=175 GeVc^2.We report the observation of electroweak single top quark production in 3.2 fb-1 of pp̅ collision data collected by the Collider Detector at Fermilab at √s=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3-0.5+0.6(stat+sys) pb, extract the value of the Cabibbo-Kobayashi-Maskawa matrix element |Vtb|=0.91-0.11+0.11(stat+sys)±0.07 (theory), and set a lower limit |Vtb|>0.71 at the 95% C.L., assuming mt=175 GeV/c2.Peer reviewe
Search for Standard Model Higgs Boson Production in Association with a W Boson using a Neural Network
Submitted to Phys. Rev. DWe present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp̅ →W±H→ℓνbb̅ ) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 fb-1. We select events consistent with a signature of a single charged lepton (e±/μ±), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150 GeV/c2, respectively.Peer reviewe
- …